M.E. Second Semester (Civil (Structural Engg.)) (New - CGS) 13093: Theory of Plates and Shells: 2 SFES 3

P. Pages: 2

Time: Three Hours

AU - 3451

Max. Marks: 80

Notes: 1.

- Answer three question from Section A and three question from Section B.
- 2. Assume suitable data wherever necessary.
- 3. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

- 1. Derive Lagrange's equation for small deflections of Laterally loaded rectangular plates. 13 Explain different boundary conditions.
- 2. Derive the general equation for deflection of simply supported rectaugular plate subjected 14 to sinusoidal loading.

$$q = q_0 \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}$$

where q_0 = intencity of loading 'a' and 'b' are the sizes of plate. Derive expressions for mx and my also.

- 3. Derive the governing differential equation for anisotropic plate using first principle.
- 4. A circular plate of radius 'a' is subjected to symmetrical bending due to uniform load of intensity 'q' on each unit area. If flexural stiffness 'D', derive governing differential equation of a plate.
- 5. A square plate of size 2m x 2m having thickness 10mm is simply supported along the edges and carries a udl of 1.2kN/m² on the entire surface of the plate. Calculate deflections and B_M at points 0, 1 and 2 Take $\mu = 0.3$ and $E = 2x10^8 \text{kN/m}^2$.

0.5m

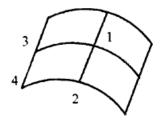
SECTION - B

Classify the shell surfaces with one suitable example for each classification. 6. a)

6

Derive the equations for following shell surfaces. b)

8


Cycloid. i)

- ii) Catenary.
- 13 Using membrane theory of circular shells with circular directrix obtain an expression for 7. stress under.
 - Dead load.

ii) Show load.

P.T.O

8.		Derive Schorer's di	fferential equation in bending theory of cylindrical shell.	13
9.	a)	State assumptions made in bending theory of cylindrical shells.		
	b)	State assumptions, advantages and range of validity of Beam theory of cylindrical shells.		
10.		Using membrane theory, find the values of stress resultants N_{θ} , $N_{x\theta}$ and N_X due to De		13
		load and show load in cylindrical shell having circular directrix at point 1,2,3 and 4 as shown in fig.		
		Radius of shell	= 10m	
		Span	= 25m	
		Semi central angle	= 40°.	
		DL	$= 2kN/m^2.$	
		SL	$= 1 \text{ kN/m}^2$	

http://www.sgbauonline.com

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से

AU - 3451 2