M.E. Second Semester (Electrical & Electronics) (New-CGS)

13290 : Neuro Fuzzy Control : 2 EEEME 3

P. Pages: 3

Time: Three Hours

AU - 3403

Max. Marks: 80

Notes:

- Answer three question from Section A and three question from Section B.
- 2. Due credit will be given to neatness and adequate dimensions.
- Assume suitable data wherever necessary.
- Illustrate your answer necessary with the help of neat sketches.

SECTION - A

1. a) Explain defuzzification of fuzzy set mathematically, why can be any particular fuzzy set transformed into an infinite no. of alpha-cut sets? Justify?

7

Suppose we have two fuzzy sets namely, $\Lambda = \left\{ \frac{1}{2} + \frac{0.5}{3} + \frac{0.3}{4} + \frac{0.2}{5} \right\}$ and

6

 $\underline{B} = \left\{ \frac{0.5}{2} + \frac{0.7}{3} + \frac{0.2}{4} + \frac{0.4}{5} \right\}$ where membership for element 1 in both $\stackrel{A}{\sim}$ and $\stackrel{B}{\sim}$ is implicitly 0 (zero).

Calculate:

i) AUB

ii) A∩B

iii) AUI

OR

2. a) State and explain frequently used properties of fuzzy sets.

6

nttp://www.sgbauonline.com

b) Consider a rule: If x is A then y is B with fuzzy sets $A = \{0.1/x_1, 0.4/x_2, 1/x_3\}$ and $B = \{0/y_1, 1/y_2, 0.2/y_3\}$. Compute the fuzzy relation R that represents the truth value of this fuzzy rule. Use first the min t – norm and then the Lukasiewicz implication. Discuss the difference in the results.

7

3. a) What are the main assumptions in a fuzzy control system design?

6

b) Explain simple fuzzy logic controller with the aid of a neat block diagram. What are the principal design elements in a general fuzzy logic controllers?

8

OR

 Design and analyse a fuzzy controller for the simplified version of the inverted pendulum system shown below.

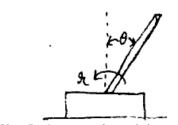


Fig. Q. 4 Inverted pendulum control

AU - 3403

1

P.T.O

The differential equation describing the system is $-m\mathcal{L}^2 \cdot \frac{d^2\theta}{dt^2} + (m\mathcal{L}g)\sin(\theta) = \tau = u(t)$ where m is the mass of the pole located at the tip point of the pendulum, \mathcal{L} is the length of the pendulum, θ is the deviation angle from vertical in the clockwise direction. $\tau = u(t)$ is the torque applied to the pole in the counter clockwise direction. u(t) is the control action, t is time and g is the gravitational acceleration constant. Assume $x_1 = \theta$ and $x_2 = \frac{d\theta}{dt}$ as the state variables. The state space representation for the nonlinear system is given by $\frac{dx_1}{dt} = x_2 \cdot \frac{dx_2}{dt} = \left(\frac{9}{\ell}\right) x_1 - \left(\frac{1}{m\ell^2}\right) u(t)$ as for very small rotations, or θ we have $\sin \theta \approx \theta$ where θ is measured in radians. If x_1 is measured in degrees and x_2 is measured in degrees per second and selecting $\ell = \theta$ and $m = \frac{180}{(\pi - 9^2)}$ the linearized and discrete time

space state equs, are

$$x_1(k+1) = x_1(k) + x_2(k)$$

 $x_2(k+1) = x_1(k) + x_2(k) - u(k)$

Assume, the universe of discourse for the two variables to be $-2^{\circ} \le x_1 \le 2^{\circ}$ and $-5 \,\mathrm{dps} \le x_2 \le 5 \,\mathrm{dps}$ (dps - degrees per second). Construct three membership functions for x_1 and x_2 on their universe for the values positive (P), zero (Z) and negative (N). Partition the control space (output) and construct nine rules in a 3 x 3 FAM table.

attp://www.sgbauonline.com

7

6

- a) Explain how a feed forward neural network is used for control with the help of a block diagram. Assume that the input layer contains situational and goal variables and the output layer contains action variables.
 - b) How learning capability of neural network is determined? Explain different data partitioning strategies for ensuring true learning and generalization.

OR

- 6. a) Derive back propagation rule for an output neuron with a sigmoidal activation function.
 - Explain original motivation behind ANN. Give formula and block diagram for artificial neurons.

SECTION - B

- 7. a) What is neural network identified model? Obtain control law directly from the plant dynamics by computing the inverse dynamics.
 - b) How do you simulate PI control with neural network? Explain with well labeled block 7 diagram.

OR

AU - 3403 2

8.	a)	Draw a general scheme of a feedforward control scheme where the controller is based on an inverse model of the dynamic process. Describe the blocks and signals in the scheme.	7
	b)	Develop an optimal neural network model for controlling temperature.	7
9.	a)	What are the basic principles of fuzzy neural systems. Define hybrid neural net.	7
	b)	Explain ANFIS learning algorithm.	6
		OR .	
10.	a)	Explain ANFIS controller with the help of a block diagram and state its important properties.	7
	b)	Explain how fuzzy concepts are used in neural networks.	6
11.		Design and explain a neuro fuzzy control system for Integrated pest management.	13
		OR	
12.		Design a neuro fuzzy control system in order to identify trash in cotton. Explain various steps in the design.	13

http://www.sgbauonline.com

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से