M.E. First Semester (Electronics & Tele.) (Full Time) (C.G.S. - New)

13334 : Digital Signal Processing and Applications : 1 ENTC 4

P. Pages: 2

Time: Three Hours

AU - 3460

7

6

13

7

6

nttp://www.sgbauonline.com

Max. Marks: 80

Answer three question from Section A and three question from Section B. Notes: 1.

- - 2. Due credit will be given to neatness and adequate dimensions.
 - 3. Assume suitable data wherever necessary.
 - Use of pen Blue/Black ink/refill only for writing the answer book. 4.

SECTION - A

- State the advantages and disadvantages of digital filters. Compare it with analog filters. 1. a) 7
 - Explain the following terms as applied to analogue and digital filters: b)
 - Phase delay

Group delay ii)

iii) Linear phase

- iv) Minimum phase
- 7 State and explain the principles of Type-I, Type-II, Type-III and Type-IV FIR filters. 2. a)
 - Describe inverse Chebyshev filters? b)
 - 7
- Explain in brief the Hilbert transforms and its applications. a)
 - 7 Explain optimum equiripple FIR filter design with related theorem. b)

OR

- Design an ideal L.P.F. whose desired frequency response
 - $Hd(e^{j\omega})=1$ $\pi/3 \ge \omega \ge -\pi/3$

$$0 \quad \pi/3 \ge |\omega| \ge \pi/3$$

Using Hamming Window

- Determine the impulse response for N=9
- Determine H(z). ii)
- For the analog transfer function 5. a)

$$H(s) = \frac{0.8}{s^2 + 1.6s + 9.64}$$
Determine $H(z)$ using 1

Determine H(z) using Bilinear transformation

- T = 1 sec and If i)
- T = 0.6 sec.ii)
- What is warping effect? What is its effect on magnitude and phase response? b)

OR

Design a digital Butterworth low pass filter whose transfer function is given by 13 6. $|H(e^{j\omega})| \le 1$ $0 \le \omega \le 0.2\pi$

 $\left|H\left(e^{j\omega}\right)\right| \leq 0.3 \quad 0.6 \leq \omega \leq \pi$

Using impulse-invariant-transformation.

http://www.sgbauonline.com

SECTION - B

7.	a)	Obtain the polyphase decomposition of the IIR system with transfer function. $H(z) = \frac{1 - 4z^{-1}}{1 + 5z^{-1}}$	7
	b)	What is quadrature mirror filter bank? Explain analysis and synthesis bank.	7
		OR	
8.	a)	Explain with block diagram the general polyphase framework for decimators and interpolators.	7
	b)	Derive an expression for the spectrum of output signal of an interpolator.	7
9.	a)	Explain the different addressing modes of DSP processor TMS320C6713.	7
	b)	Explain the role of DSP in Radar systems.	6
		OR	
10.	a)	Explain the pipeline operations in DSP processor TMS320C6713.	6
	b)	Explain in detail the short time Fourier analysis for speech signals.	7
11.		How time-frequency analysis can be performed with the help of wavelet transform? Also state its properties.	13
		OR	
12.	a)	Prove the orthogonality relations of Doubechies wavelets.	6
	b)	Discuss briefly the various applications of wavelet transforms.	7

http://www.sgbauonline.com