http://www.sgbauonline.com

M.E. Second Semester (Mechanical Engineering) (CAD / CAM) (F.T.) (CGS) 13495: Robotics and Robot Application: 2 MCC 3

13495 : Robotics and Robot Application : 2 MCC

P. Pages: 2 Time: Three Hours

AU - 3297

Max. Marks: 80

Notes		
11000	-	

http://www.sgbauonline.com

- 1. All question carry marks as indicated.
- Answer three question from Section A and three question from Section B.
- Assume suitable data wherever necessary.
- 4. Illustrate your answer necessary with the help of neat sketches.
- Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

1.	a)	Describe the major components of a robotic system with the help of neat sketches.	7
	b)	Discuss the typical specifications of robot that define robots performance capabilities.	6
2.	a)	How will you classify the grippers? Explain any two types of grippers with the help of suitable sketches.	7
	b)	What are encoders? Explain the absolute types of encoder with the help of neat sketch.	6
3.	a)	Sketch and explain the hydraulic drive system used to control the motion of a robotic arm.	7
	b)	Explain different types of interlocking commands and quote example of each.	6
4.	a)	Describe various joint notation schemes in robots. Draw the suitable sketches.	7
	b)	Explain the principle and working of force and torque transducers used in robots state in what applications these transducers can be used?	7
5.	a)	What are the end-effectors in robots? Give at least four different examples of the end of the arm tooling used in robots for different applications.	7
	b)	What is robot controller? Describe the typical functions of robot controller.	6
		SECTION – B	
6.	a)	Discuss how the robots used for processing operations are different from handling operations.	7
	b)	Explain the tasks performed by robots in FMS environment with the help of suitable example.	6
7.	a)	Explain the forward and reverse transformation of 3D of 2 D robot arm.	7
	b)	Explain the use of robot for machining operation, suggest the tooling, drive systems and sensors for the given operation.	7
8.	a)	Distinguish between AS/RS and material handling robots.	7

P.T.O

http://www.sgbauonline.com

	b)	Describe the types of kinematics of a robot manipulator. Discuss the problems associated with inverse kinematics.	6
9.	a)	Discuss the distinguishing characteristics associated with the robots in assembly operation.	7
	b)	Explain link parameters, joint variables and arm matrix.	6
10.	a)	A vector $V = 2i + 3j + 5k$ is rotated by 45° about the z-axes of the reference frame. It is again rotated by 45° about the x-axes of the rotated frame. Find the rotated coordinates.	7
	b)	Two points $Q_{UVW}(3,2,4)^T$ and $B_{UVW}(2,3,6)^T$ are to be translated by distances +3 units along ox-axis and -2 units along oz-axis. Using the homogeneous transformation matrix, determine the new points a_{VW} and b_{VW} .	6

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से

AU - 3297 2

http://www.sgbauonline.com