AQ - 2651

First Semester M. Sc. (Applied Electronics) (CBS) Examination (New)

ELECTRIC AND MAGNETIC FIELD

1 AE 4

P. Pages: 4

Time: Three Hours] [Max. Marks: 80

- Note: (1) Due credit will be given to neatness and adequate dimensions.
 - (2) Assume suitable data wherever necessary.
 - (3) Retain the construction lines.
 - (4) Illustrate your answer wherever necessary with the help of neat sketches.
- 1. (a) The vertices of a triangle are located at (4, 1, -3), (-2, 5, 4) and (0, 1, 6). Find the three angles of the triangle.
 - (b) Find :--
 - (i) The vector component of $F=10a_x-6a_y+5a_z$ that is parallel to $G=0.1a_x+0.2a_y+0.3a_z$;
 - (ii) The vector component of F that is perpendicular to G.

OR

- 2. (a) Calculate the distance between the following pairs of points:—
 - (a) (2, 1, 5) and (6, -1, 2)
 - (b) $(3, \pi/2, -1)$ and $(5, 3\pi/2, 5)$
 - (c) $(10, \pi/4, 3\pi/4)$ and $(5, \pi/6, 7\pi/4)$.
 - (b) Find the gradient of the following scalar fields:
 - (i) $U = \rho^2 z \cos 2\phi$
 - (ii) $W = 10 \text{ r } \sin^2 \phi \cos \phi$
- 3. (a) Derive an expression for the electric field intensity E due to a infinitely extended uniform line charge density pL.

6

7

(b) Evaluate both sides of the divergence theorem for the field $D = 2xya_x + x^2ay$ C/m² and the rectangular parallelepiped formed by the planes x = 0 and 1, y = 0 and 2 and z = 0 and 3.

OR

- 4. (a) Three infinite uniform sheets of charge are located in free space as follows:
 3 nC/m² at z = -4, 6 nC/m² at z = 1, and -8 nC/m² at z = 4.
 Find E at the point:—
 - (i) P_A (2, 5, -5);
 - (ii) $P_{\mathbf{R}}$ (4, 2, -3)

.

(b) Given the potential field in cylindrical

coordinates, $V = \frac{100}{(z^2+1)} \rho \cos \phi V$, and

point P at $\rho = 3m$, $\phi = 60^{\circ}$, z = 2m, find values at P for (a) V; (b) E; (c) E; (d) dV/dN; (e) a_N

- (a) Drive an expression for magnetic field intensity due to an infinitely long straight filament carrying a direct current I along z axis.
 - (b) State and prove stokes theorem.

7

OR

6. (a) Calculate the value of the vector current density in cylindrical coordinates at P_B (1.5,

90°, 0.5) if H =
$$\frac{2}{\rho}$$
 (cos 0.2 ϕa_p)

7

(b) Explain following :-

Scalar magnetic potential

Vector magnetic potential.

6

- 7. (a) Let Region 1(z<0) be composed of a uniform dielectric material for which $\varepsilon_r = 3.2$, while Region 2 (z > 0) is characterized by $\varepsilon_r = 2$. Let D1 = 30ax + 50ay + 70az nC/m² find :-
 - (i) D_{N1};
 - (ii) **D**_{t1};

AQ-2651

(iii) θ_1 ; (iv) D_{N2}; (v) **D**₁₂; (vi) θ_2 (b) Find the amplitude of the displacement current density adjacent to anautomobile antenna where the magnetic field intensity of an FM signal is $Hx = 0.15 \cos [3.12 (3x10^8t-y)] A/m$ OR 8. (a) Obtain magnetic boundary condition and show that $M_{t_2} = \frac{\chi_{m_2}}{\gamma_{m_1}} M_{t_1} - \chi_m^k$ where χ_m is magnetic susceptibility and k is surface current 7 (b) Derive the boundary condition at the interface of two dielectric media. 6 9. Derive the wave equations and write its phasor form. 7 The phasor magnetic field intensity for a 400 MHz uniform plane wave propagating in a certain lossless material is $(2a_v - j5a_z)e^{-j25x}$ A/m. Knowing that the maximum amplitude of E is 1500V/m, find β , η , λ , ν_p , μ_r , ε_r . OR 10. (a) Discuss the reflection of a plane wave incident normally on an interface between two different media in terms of reflection and transmission coefficient. (b) Define following :— Loss tangent (ii) Skin depth (iii) Brewster angle.

11.	(a)	Obtain the radiation resistance for a short dipole and monopole.	6
	(b)	With any example, explain pattern multiplication method to obtain radi pattern.	ation
		OR	,
12.	(a) (b)	Describe uniform linear array and obtain its radiation pattern. Define the following terms	8
,		Radiation resistance.	
		Retarded potential	5