First Semester M. Sc. (Applied Electronics) Examination (New)

ELECTRONICS DEVICES AND CIRCUITS

Paper - 1 AE 2

P. Pages: 3

Time: Three Hours]

[Max. Marks: 80

- Note: (1) All questions carry marks as indicated.
 - (2) Due credit will be given to neatness and adequate dimensions.
 - (3) Assume suitable data wherever necessary.
 - (4) Illustrate your answer wherever necessary with the help of neat sketches.
- (a) In a diode how reverse saturation current is related with temperature?
 An ideal silicon diode has a reverse saturation current of 10 μΛ at 25°C.
 Calculate its dynamic resistance at 105°C for 0.7 V bias in :
 - (i) For ward direction.
 - (ii) Reverse direction.

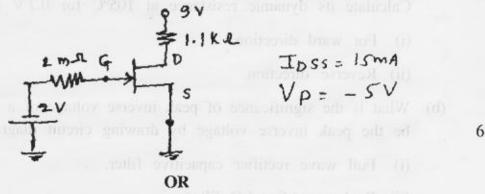
7

- (b) What is the significance of peak inverse voltage of a diode? What will be the peak inverse voltage by drawing circuit diagrams in case of:
 - (i) Full wave rectifier capacitive filter.
 - (ii) Bridge rectifier LC filter.

7

OR

- (a) With the help of neat ckt. diagram and waveforms, explain the working of a positive clamping circuits.
 - (b) With the help of circuit diagram and V-I characteristics. Explain how zener diode can be utilized as voltage regulator.
 7
- (a) What is Q point of transistor? On which parameters does the Q point depend? Explain the effect of variations of Q point for CE transistor with dc load line.


(b) Draw the h-parameter model for CE transistor configuration. Explain why CE configuration is preferred in amplifier ckt.

OR

- 4. (a) A Si transistor is biased by collector to base biased method with $V_{CC}=15 \text{ V}$. $R_C=2 \text{ k}\Omega$, $R_B=200 \text{ k}\Omega$, $\beta=100$. Determine its operating point and stability factor.
 - (b) For any single transistor amplifier prove that:

$$R_{i} = \frac{h_{i}}{1 - hr\Lambda v}$$

- (a) Explain the construction, operation and V_{DS}-I_D and transfer characteristics of n-channel depletion type MOSFET.
 - (b) Explain simplified fixed bias circuit for the given ckt. calculate V_{DS} and I_D.

- (a) Explain drain and transfer characteristics of N-channel JFET. Also explain the concept of pinch off voltage.
 - (b) Draw CMOS transistor and explain its working.
- 7. (a) What are the effects of negative feedback? Give explanation also. 7
 - (b) What are the various voltage and current feedbacks? Explain with neat sketches.

denond? Explain the effect of variations to O point for CE

OR

- 8. (a) Draw the ckt. of Darlington emitter follower. Explain the biasing problem associated with it. How it is overcome?
 - (b) What is cascode pair? Draw the ckt. diagram and where it is used?
- (a) Explain the working principle of wien bridge oscillator circuit. Explain why negative feedback is used in addition to the positive feedback.
 - (b) For optimally biased transformer coupled class A power Amplifier. Maximum collector current change is 100 mA. for V_{CC} =10V find the power transferred to a 4 Ω speaker load if it is :
 - (i) Directly coupled.
 - (ii) Transformer coupled to the transistor find also the turn ratio required.

OR

- (a) Explain Colpitt oscillator with circuit diagram. Specify how Barkhausen criteria is fullfilled.
 - (b) Explain the operation of class-B push pull amplifier with neat ckt. diagram and waveforms.
- (a) Draw the VI characteristics of Tunnel diode. Explain the characteristics on the basis of tunneling effect.
 - (b) Explain the construction details and working principle of LED. List advantages of LED over conventional light source.

OR

- 12. (a) Explain the construction, working and applications of photodiode. 7
 - (b) Explain how capacitance varies in a varactor diode. Sketch the characteristics. What are its application?

*--