\mathbf{AO}	_	826

First Semester M. Sc. (Part - I) Examination (C.B.C.S.)

CHEMISTRY

Paper - IV

(Modern Methods of Separation)

P. Pages: 6

Time: Three Hours]

[Max. Marks: 80

Note: (1) All questions are compulsory and carry equal marks.

(2) Use of calculator/log table is permitted.

Describe the classification of analytical methods. Also give examples of each type.

> What are micro and semimicro balances? Explain the working of electronic balance.

> (c) 25 ml pipette is calibrated using steel weights. The weight of the delivered volume was 24-971 g. What is the volume of the pipette at 25 and 20 °C if 1 g of water has a volume of 1.004 ml and 1.0028 ml respectively?

P.T.O.

AQ-826

(a) In what way TLC is superior to other chromatographic techniques ?

Describe the following detectors used in GC

(i) Flame ionization detector.

(ii) Rare gas detectors.

Draw a neat diagram of HPLC set up and explain it.

OR

Describe columns and column materials used in GC.

(q) Define — Plate height and resolution. Calculate the number of plates using the following data (in terms of distance):-Retention time = 52.3 mm. Width at the base of the peak $= 8.0 \,\mathrm{mm}$.

Write brief note on electrochromatography. 5

(a) What are ion exchange resins? How are they classified?

Give applications of ion exchange resins: 5

AQ - 826

OR

- (p) Describe the method of sampling of gases and particulates.
- (q) Explain the use of the followings:—
 - (i) Desiccators.
 - (ii) Wash bottles.
 - (iii) Furnaces and ovens.
- (r) 5 ml of conc. HCl were diluted to 100 ml. 10 ml of this solution was further diluted to 250 ml and 25 ml of this solution when titrated with 0.05 N NaOH, required 15 ml for neutralization using methyl orange indicator. Calculate the normality of conc. HCl. 5
- 2. (a) What are significant figures? State the rules for determining significant figures. 5
 - (b) Explain the following terms:—
 - (i) Accuracy and Precision.
 - (ii) Average deviation and Standard deviation.

(c) Calculated values by two different methods are given below —

Method - 1	Method - 2
127	130
125	128
123	131
130	129
131	127
128	125
129	

Find out if there is significant difference in the precision of the two methods. (Tabulated F values for $v_1=6$ and $v_2=5$ is 4.95) 5

OR

- (p) What do you mean by errors in analysis?Describe different types of errors.
- (q) Write a note on rejection of data based onQ test.
- (r) Calculate mean, mean deviation and standard deviation for the following ten results obtained for a given method:

8.75,	8•98,	9-25,	8.56,	9.20
9 -5 9,	9-14,	8.68,	8.79,	9-45

6

AQ-826

.

P.T.O.

www.sgbauonline.com

	(c)) Define ion exchange capacity.				
		In an experiment to find ion excha	nge			
		capacity, 20 ml of effluent required 15 m	of			
		0.05 N NaOH for titration. Calculate exchange capacity if total volume of efflu				
		is 250 ml and the weight of resin is 0.56	s o			
			6			
		OR				
		VA.				
	(p)	Explain the theory of ion exchange resir	1.			
			5			
	(q)	(q) What are the conditions for a polymer to act				
•		as ion exchange resin?	5 .			
	(r)	of buoingly basic				
	anion exchange resin. Also state how					
	•	prepared.	6			
5.	(a)	The state are agent	ors			
		which favour solvent extraction.	5			
	(b)	i totto ing reagents	in			
		solvent extraction :				
		(i) 8 – Hydroxyquinoline and				
		(ii) Dithiodicarbamates.	5			
AQ-	826	5 P.T.	O.			

www.sgbauonline.com

(c) A certain solvent system has a distribution ratio of 50. If 200 mg of a solute is dissolved in 100 ml of water and extracted by 25 ml of organic solvent four times, find out the percent extraction for the system.

6

OR

- (p) Write in brief on Crown ethers and Calixarenes.
- (q) Explain synergestic extraction with suitable example.
- (r) Arsenic (III) is extracted 70% from 7 M HCl into an equal volume of toluene. What percentage will remain extracted after three individual extractions with toluene?

