AU-239

M.Sc.—I (Semester—I) (C.B.C.S. Scheme) Examination

CHEMISTRY (New)

(Organic Chemistry-I)

Paper—II

Time: Three Hours

[Maximum Marks: 80

Note: --- All questions are compulsory and carry equal marks.

- 1. (a) Discuss the aromaticity of following compounds:
 - (i)
 - (ii)
 - (iii) $\overset{\oplus}{\circ}$

6

- (b) Explain the following term in brief:
 - (i) Conjugation
 - (ii) Bonding in fullerenes.

4

(c) Draw the most stable conformations of following molecules:

6

OR

1

VOX--34822

(Contd.)

(p) Discuss:

- (i) Effect of conformation on reactivity
- (ii) Resonance.

4

- (q) Classify the following molecules as aromatic, anti-aromatic or non-aromatic:
 - (i)
 - (ii)
 - (iii) O

6

- (r) (i)
 - (ii) Nemer-CN
 - (iii) COOH

Draw the most stable chair conformation for above given molecules. Discuss their stability.

6

2. (a) Explain axis, plane, center and alternating axis of symmetry in brief.

5

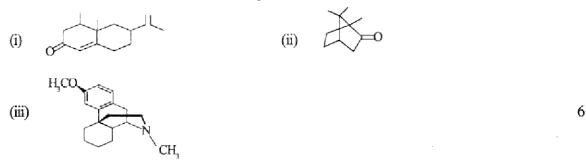
- (b) Convert the following Newmon conformation into Sawhorse and Fischer conformation:
 - (i) (i)

H

(iii) H_COH

6

VOX--34822


2

(Contd.)

(c) Explain Cahn-Ingold-Prelog rules for nomenclature of chiral molecules with suitable examples.

OR

(p) Give the R and S nomenclature for all possible chiral centre in the following molecules:

- (q) Describe various methods for resolution of racemic mixture.
- (r) Convert following Newman conformation into Sawhorse confirmation. Comment on chirality of the given molecules:

4

 (a) Explain the mechanistic significance of the 'ρ' values for the elimination of 1 under the two different sets of conditions:

$$Z \xrightarrow{CH_3} \xrightarrow{CH_3O} \xrightarrow{CH_3O} \xrightarrow{CH_3O} \xrightarrow{CH_3} \rho = 1.02$$

$$CH_3 \xrightarrow{CH_3OH} \xrightarrow{CH_3} \rho = -1.3$$

$$CH_3 \xrightarrow{CH_3OH} \xrightarrow{CH_3} \rho = -1.3$$

VOX.—34822 3 (Contd.)

- (b) What is primary kinetic isotopic effect? Explain significance of primary kinetic isotopic effect in determining the rate and mechanism of reaction.
- (c) Describe transition state of following reaction in light of Hammond Postulates:

$$H_{3}^{C} = C \qquad H \qquad H - CI \qquad H_{3}^{C} \qquad C \qquad H$$

$$H_{3}^{C} \qquad C \qquad CI \qquad H$$

$$OR \qquad OR$$

5

- (p) Explain in brief-kinetic and thermodynamic controlled reactions.

Comment on given energy profile diagram and give the structure of activated complex in each reaction.

(r) Propose a mechanism for the following reaction given that $K_{\mu}/K_{D} = 6.1$ and $\rho = 2.02$:

$$S-S-S-Z$$

$$Z$$

$$S+HS-Z$$

$$S$$

- 4. (a) Discuss the various factors controlling unimolecular substitution reaction.
 - (b) Predict the product and mechanistic pathway for following SNI reaction:

VOX—34822 4 (Contd.)

(c)
$$\xrightarrow{\text{NaOEt}}$$
 + $\xrightarrow{\text{NaOEt}}$ + $\xrightarrow{\text{I : 3'}}$

Explain the mechanism for the formation of given eliminated product. Discuss about product formation ratio.

OR

(p) Provide the structure of the product which result in the reaction below. Also depict the mechanism of reaction:

$$\begin{array}{c}
CI & \underbrace{CH_1CH_2OH} \\
\Delta
\end{array}$$

(q) What is pyrolytic elimination? Discuss the mechanism and orientation in pyrolytic elimination.

(r)
$$R$$
 CH_2OH OH OH CH_2OH CH_2OH CH_2OH

Explain the concept of Neighbouring Group Participation in given reaction.

5

- 5. (a) Comment on:
 - (i) Diazonium coupling
 - (ii) Pechman Reaction 6

Explain the concept of aromatic electrophilic substitution in given reaction. Describe the mechanism.

VOX--34822 5 (Contd.)

(c) The reaction involved in the following conversion is Benzyne Mechanism. Explain the progress of reaction with proper mechanism:

$$\begin{array}{c|c} CI & NaNH_2 \\ \hline & NH_3 \end{array}$$

5

OR

- (p) Discuss in brief:
 - (i) Von Richter Rearrangement
 - (ii) Smiles Rearrangement.

6

(q)
$$H \leftarrow Cl \rightarrow OEt \rightarrow CH_2Cl_2 \rightarrow OEt \rightarrow OET$$

Describe the name and mechanism of given reaction.

5

(r)
$$O_2N$$
 O_2 O_3N O_3N O_3N O_2 O_3N O_3N

Explain the concept of IPSO attack in the given reaction. Give the mechanism for given reaction. Comment on effect of presence of electron withdrawing group on the ring.

VOX-34822