(q)	Expl	ain	magnetic	properties	of	the	nucleu
	and	net	magnetic	moment	of	the	nuctlei.

5

430

 (r) Discuss collective model and give its advantages.

- 5. (a) Describe the difference between activated complex and transition state. 4
 - (b) Derive the Eyring equation for the rate constant in transition state theory. 8
 - (c) What is application of Eyring equation?

OR

- (p) Write postulates of transition state theory.
 Compare transition state Theory with Collision theory.
- (q) Explain factors determining reaction rate.
- (r) For the hydrolysis of sulphamic acid, velocity constant is 1.16×10^{-3} mole⁻¹ dm³ sec⁻¹ at 363 K, while $E_a = 127490$ J/mole. From these data find $\triangle G^*$, $\triangle H^*$ and $\triangle S^*$ of the reaction at 363 K.

First Semester M. Sc. (Part - I) Chemistry (CBCS) Examination

PHYSICAL CHEMISTRY - I

Paper - III

P. Pages: 4.

Time: Three Hours]

[Max. Marks: 80

- Note: (1) All questions carry equal marks and are compulsory.
 - (2) Use of log-table and calculator is allowed.
- 1. (a) Discuss rigid rotor using Schrodinger wave equation. 4
 - (b) What are Slater Condon parameters ? 4
 - (c) What is Zeeman effect? Discuss how a single transition 2p → 1s splits three in pressure of magnetic field.
 - (d) Show that particle in one diamentional box the wave functions ψ_1 and ψ_2 of any two state are orthogonal.

OR

- (p) Discuss application of variation theorem to Helium like Li⁺ion.
- (q) Mention eigen values and eigen functions for angular momentum.

	·
(r)	Determine term symbols for the ground state electronic configuration (1s ² 2s ² 2p ²)
•	of carbon.
(a)	
	catalytic activity at surfaces. 4
(b)	•
	adsorbent by Brauner, Emmell and Teller
	(B.E.T.) method.
(c)	What micellisation? Discuss the thermo-
	dynamics and mechanism of micellasation.
	8
	OR
(p)	Derive and discuss Gibbs adsorption
\ I -7	equation. 8
(q)	
(c)	
(0)	Explain Reverse Wieches.
(a)	How will you determine the partial molar
	properties of a system from intercept
	method ? 4
(b)	
(-)	6
(r)	
(L)	coefficient. 6
	OR
(n)	How chemical potential varies with respect

2.

3.

AQ-825

- (q) Discuss entropy productions in coupled phenomena.
- (r) Discuss the term ideal and non-ideal solutions.
- 4. (a) Explain in brief:
 - (i) Fermi gas model.
 - (ii) Optical model.

What is angular momentum? Discuss total

- angular momentum of the nucleus. 4
- (c) Calculate dipole moment in Bohr magneton and nuclear magneton in CGS and SI units, using following data

 $m_e = 9.107 \times 10^{-28} \text{ g}, e = 4.8 \times 10^{-10} \text{ e.s.u}$ $m_p = 1.673 \times 10^{-24} \text{ g}, e = 1.602 \times 10^{-19} \text{ coulomb}$ $m_n = 1.675 \times 10^{-24} \text{ g}, h = 1.055 \times 10^{-27} \text{ erg/sec}$ $c = 3 \times 10^{10} \text{ cm/sec}, h = 1.055 \times 10^{-34} \text{ J/sec}.$

OR

(p) Give a brief description of nuclear shell model and discuss its merits.

to pressure