AU-240

M.Sc.—I Semester—I (C.B.C.S. Scheme) Examination CHEMISTRY (New)

(Physical Chemistry—I)

Paper—III

	4 94 2 7 1 4 4	
Time: Three Hours) [Maximum 3		larks : 80
No	ote:—(1) All questions are compulsory and carry equal marks.	
	(2) Use of log table and calculator is permitted.	
1. (a)	Calculate the probability, P, of locating a particle between $x = 0$ (left hand side	of a box
	and $x = 0.25$ nm in its lowest energy state in a box of length 1.0 nm.	
(b)	Determine the degree of degeneracy of the energy level 6h ² /8ma ² of a particle in	a cubica
	box. 4	
(0)	Explain linear variation principle and its applications.	8
	OR	
(p)	Discuss application of perturbation theorem to He atom.	8
(q)	Deduce Eigen values and Eigen functions for angular momentum.	-
(r)	Calculate the magnitude (in atomic units) of angular momentum of an electron that	occupies
	the following atomic orbitals: 1s. 3s, 2p, 3p, 3d.	4
2. (a)	Derive and discuss Gibbs adsorption equation.	8
(b)	What is Critical Micellar Concentration (CMC)? What are the factors affecting to	he CMC
	of surfactants? How to determine Critical Micellar Concentration (CMC)?	8
	OR	
(p)	Give an account of micellization and explain hydrophobic interaction between mic	elles.
(q)		6
(r)		V
(*)	(i) Microemulsion	
	(ii) Reverse emulsion.	J
	(ii) Reverse emulsion.	4
VOX-3	4823	(Conta.)

www.sgbauonline.com

(a) Show that if equation of state for a gas is $p(V_m - b) = R1$ where b is a constant, the fugacity of the gas is given by $Ea\frac{f}{p} = \frac{bp}{RT}$. (b) Explain partial molar volume with its significances. Explain entropy production and entropy flow for irreversible coupled reaction. OR (p) Give an account of Debey-Huckel theory for activity and activity coefficient of electrolyte solution. (q) Give an account on the principle of microscopic reversibility and the Onsager reciprocal 8 relation. (a) 64 Cu decays with a half-life of 12.8 h as follows: 42% by EC. 19% by β^{+} , and rest by β^{-} . Find 4. the partial decay constant and half-life for each mode of decay. (b) Discuss in detail about critical size of a thermal reactor. What do you mean by parent and daughter nuclear substances? Calculate number of α and β particles emitted from following nuclear reaction: $\underset{8d}{\overset{220}{\times}} X \xrightarrow{\text{enuited } \alpha, \beta} \xrightarrow{\underset{86}{\overset{212}{\times}}} Y$. OR

1

8

8

6

5

5

6

5

VOX-34823 2 (Contd.)

Give the decay schemes representing α , β , β , EC. IT and branched decay.

Discuss α-particle energy spectrum and Breeder reaction in brief.

What is Geiger Natta law? Explain it.

www.sgbauonline.com

- 5. (a) Discuss in detail transition state theory of reaction rates and its application to H, ± Br reaction.
 - (b) Give an account of Marcus extension of the RRK treatment in brief.

OR

- (p) Give an account of Lindemann theory of unimolecular reactions. Discuss two main reasons for break down of Lindemann theory.
- (q) Calculate ΔG^* , ΔH^* and ΔS^* for the second order reaction :

$$2NO_1(g) \rightarrow 2NO(g) + O_2(g)$$

At 500 K. Given $A = 2.1 \times 10^9 \text{ sec}^{-1}$ and the energy of activation – 121 kJ/mole.

8

www.sgbauonline.com