M.Sc. (Part—I) Semester—I (C.B.C.S. Scheme) Examination 102: MATHEMATICS

(Advanced Abstract Algebra)

Time: Three Hours]

[Maximum Marks: 80

Note: Solve any ONE question from each Unit.

UNIT-I

1. (a) Prove that, a subgroup H of a group G is normal in G if and only if,

$$g^{-1}Hg - H \quad \forall \quad g \in G \quad iff$$

 $g^{-1}hg \in H \quad \forall \quad h \in H, \quad g \in G.$

8

- (b) Let G be a finite group of order p^n , where p is prime and n > 0 then prove that :
 - (i) G has a nontrivial center Z.
 - (ii) $Z \cap N$ is nontrivial for any nontrivial normal subgroup N of G.

8

- 2. (c) Let G be a group and let X be a set. Prove that:
 - (i) If X is a G-set, then the action of G on X induces a homomorphism $\phi: G \to S_X$.
 - (ii) Any homomorphism $\phi: G \to S_X$ induces an action of G onto X.

Я

(d) Let H and K be normal subgroups of a group G and K \subseteq H. Prove that $\frac{G}{H} \simeq \frac{G/K}{H/K}$.

8

UNIT-II

- 3. (a) Let G be a group of order 108. Show that there exist a normal subgroup of order 27 or 9.
 - (b) Let p be a prime dividing 0(G) where G is a finite group. Show that:
 - (i) If K is normal in G and P is a Sylow p-subgroup, then P ∩ K is a Sylow p-subgroup of G.
 - (ii) $\frac{PK}{K}$ is a Sylow p-subgroup of $\frac{G}{K}$.
 - (iii) Every Sylow p-subgroup of $\frac{G}{K}$ is of the form $\frac{PK}{K}$ where P is a Sylow p-subgroup of G.
- 4. (c) Prove that, a sylow p-subgroup of a finite group G is unique iff it is normal.
 - (d) Define Alternating group Λ_n . Prove that Λ_n , n > 4 is the only nontrivial normal subgroup of S_n .

UNIT--III

5. (a) Let A and B be two ideals of a ring R, then prove that:

(i)
$$\frac{A+B}{B} \cong \frac{A}{A \cap B}$$

(ii)
$$\frac{Z}{\langle 2 \rangle} \cong \frac{5Z}{10Z}$$
.

WPZ--8321

- (b) Let R be a commutative ring. Prove that an ideal P of R is a prime ideal iff for two ideals A, B of R, AB \subseteq P implies either $A \subseteq P$ or B \subseteq P.
- 6. (c) Prove that, Let $R_1, R_2, ..., R_n$ be a family of rings, and let $R = R_1 \times R_2 \times R_3 \times \times R_n$ be their direct product. Let $R_i^* = \{(0, ..., 0, a_i, 0,, 0)/a_i \in R_i\}$. Then $R = \bigoplus_{i=1}^n R_i^*$ is

a direct sum of ideals R_i^* and $R_i^* \simeq R_i$ as rings; on the other hand, if $R = \bigoplus_{i=1}^n A_i$, a direct

sum of ideals of R, then $R \simeq A_1 \times A_2 \times ... \times A_n$, the direct product of $A_i's$ considered as rings on their own right.

- (d) Define:
 - (i) Maximal ideal
 - (ii) Prime ideal.

In ring R with unity, prove that each maximal ideal is prime. But the converse is in general not true.

UNIT--IV

- 7. (a) Define Unique Factorization Domains and prove that commutative integral domain $R = \{a + b\sqrt{-5} / a, b \in \mathbb{Z} \}$ is not unique factorization domain.
 - (b) Define:
 - (i) Prime Element
 - (ii) Irreducible Element.

Prove that, in a Principal Ideal Domain (PID) an element is prime if and only if it is irreducible.

- 8. (c) Define:
 - (i) Euclidean Domain (ED)
 - (ii) Principal Ideal Domain (PID).

Prove that, every ED is a PID.

(d) Prove that if F is a field, then F[x] is a Euclidean Domain.

8

UNIT-V

- 9. (a) Let R be a ring with unity. Let Hom_E(R, R) denote the ring of endomorphism of R regarded as a right R-module. Then prove that. R = Hom_E(R, R) as rings.
 8
 - (b) Define:
 - (i) Cyclic Module
 - (ii) Simple R-module

and let M be a simple R-module then show that $Hom_p(M, M)$ is a division ring.

- 10. (c) If M is an R-module and $x \in M$ then show that the set $K = \{rx + nx / r \in R, n \in \mathbb{Z}\}$ is an R-submodule of M containing x. Further, if R has unity, then K = Rx.
 - (d) Let A and B be R-submodules of R-module M and N respectively. Then show that

$$\frac{M \times N}{A \times B} \cong \frac{M}{A} \times \frac{N}{B}.$$

WPZ 8321 2 125