AQ - 803

First Semester M.A./M.Sc. (Part - I) (CBCS) Examination

(Old Course)

MATHEMATICS

Paper - I MTH 6 (106)

(Advanced Discrete Mathematics - I)

P. Pages: 5

Time: Three Hours] [Max. Marks: 80

Note: Solve One question from each unit.

UNIT I

- 1. (a) Show that (without truth table)
 - (i) $P \rightarrow (Q \rightarrow R) \Leftrightarrow P \rightarrow (\neg Q \lor R) \Leftrightarrow (P \land Q) \rightarrow R$
 - (ii) $(\sim P \land (\sim Q \land R)) \lor ((Q \land R)) \lor (P \land R)) \Leftrightarrow R$
 - (b) Define and symbolise.
 - (i) Predicates.
 - (ii) Quantifiers, Also state rules US, ES, EG and UG 8

- (c) Write the rules of generalization and show (∃x)(P(x)∧Q(x)) ⇒(∃x)P(x)∧(∃x)Q(x) and is the converse true? Explain.
 - (d) Write the rules of inference and show that RVS follows logically from the premises CVD, (CVD) → ¬H, ¬H → (A ∧ ¬B) and (A ∧¬B) → (RVS).

UNIT II

- (a) Show that for any commutative monoid
 (M, *) the set of idempotent elements of M forms a submonoid.
 - (b) State and prove fundamental theorem of semigroup homomorphism.
 8
- 4. (c) Let X be a set containing n elements, let X* denote the free semigroup generated by X, and let <S, ⊕> be any other semi-group generated by any n generators, then prove that there exists a homomorphism g:x*→S
 - (d) Let $\langle S, * \rangle$ and $\langle T, \triangle \rangle$ be two semigroups and g be a semigroup homomorphism from $\langle S, * \rangle$ to $\langle T, \triangle \rangle$. Corresponding to the

homomorphism g, there exists a congruence relation R on $\langle S, * \rangle$ defined by x R y iff g(x) = g(y) for x, y \in S, prove this.

UNIT III

(a) Let <L, ≤> be a lattice, for any a, b, c ∈ L.
 Then prove the following inequalities

$$a \oplus (b * c) \leq (a \oplus b) * (a \oplus c)$$

$$a*(b\oplus c) \ge (a*b)\oplus (a*c)$$

- (b) Define chain and prove that every chain is a distributive lattice.
 8
- 6. (c) Show that De-Morgan's law given by (a*b)' = a' ⊕ b' and (a ⊕ b)' = a' * b' holds in complemented distributive lattice.
 - (d) Define Distributive lattice and show that the direct product of any two distributive lattice is distributive.

UNIT IV

7. (a) In any Boolean algebra, show that

(i)
$$(a+b)(a'+c)=ac+a'b=ac+a'b+bc$$

(ii)
$$a=0 \Leftrightarrow ab'+a'b=b$$

8

- (b) Prove the following Boolean identities.
 - (i) $(a*b*c) \oplus (a*b) = a*b$
 - (ii) a ⊕(a'*b)=a⊕b 8
- (c) Define Boolean homomorphism. Show that a lattice homomorphism on a Boolean algebra which preserve 0 and 1 is a Boolean homomorphism.
 - (d) If p, q, r, a, b are elements of Boolean algebra then prove that
 - (i) pqr + pqr' + pq'r + p'qr = pq + qr + rp
 - (ii) ab + ab' + a'b + a'b' = 1

UNIT V

- 9. (a) Use k-map to minimise the Boolean expression.
 - (i) $f(a, b, c, d) = \Sigma(0, 1, 2, 3, 13, 15)$
 - (ii) $f(a, b, c, d) = \Sigma(0, 5, 7, 8, 12, 14)$ 8
 - (b) Obtain product of sums of cannonical form of boolean expression.
 - (i) $x_1 \wedge x_2$
 - (ii) x₁ ∨ x₂

- 10. (c) Obtain sum of product cannonical form in three variables. x₁, x₂, x₃ of
 - (i) x2 V x3'
 - (ii) $(x_1 \lor x_2)' \lor (x'_1 \land x_3)$ 8
 - (d) Obtain the values of the Boolean forms x₁*(x'₁ ⊕x₂) x₁*x₂ and x₁ ⊕(x₁*x₂) over the ordered pairs of the two-element Boolean algebra.

