M.Sc. (Part—I) Semester—I (C.B.C.S. Scheme) Examination 106: MATHEMATICS

Paper-V

(Advanced Discrete Maths-I)

Time: Three Hours

[Maximum Marks: 80

Note:— Solve **ONE** question from each unit.

UNIT-I

1. (a) Translate into symbolic form the statement "jack and jill went up the hill" and construct the truth table and show that:

$$P \to (Q \to R) \Leftrightarrow (\exists Q \lor R) \Leftrightarrow (P \land Q) \to R.$$
 8

(b) State the Rules of Inferences (i.e. Rule P, Rule T and Rule CP) and show that :

$$(\exists P \land (\exists Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R.$$

- 2. (c) Define and symbolise:
 - (i) Predicates
 - (ii) Universal specification
 - (iii) Quantifiers, also state Rules US, ES and UG
 - (iv) Existential Generalization.

8

(d) Prove that:

$$f(x) (P(x) \land Q(x)) \Rightarrow f(x) (P(x) \land f(x) \cdot Q(x)).$$

Is the converse true? Explain.

- 8

UNIT-II

- 3. (a) Let A be the set of 2×2 matrices, show that semigroups $A = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \middle| a \in R \right\}$ and (R, +) are isomorphism.
 - (b) Show that, for any commutative monoid (M, *) the set of idempotent element of M forms a submonoid.
- 4. (c) Prove that <S, *> be a semigroup and R be a congruence relation on <S, *> then the quotient set S/R is a semigroup on <S/R, ⊕> where the operation * on S. Also there exist a homomorphism from <S, *> onto <S/R, ⊕> and it is called natural homomorphism.
 - (d) Prove that $\langle S, * \rangle$ and $\langle T, \Delta \rangle$ be two semigroups and g be a semigroup homomorphism from $\langle S, * \rangle$ to $\langle T, \Delta \rangle$ corresponding to the homomorphism g, there exists a congruence relation R on $\langle S, * \rangle$ defined by XRY iff g(x) = g(y) for $x, y \in S$.

WPZ--8325

8

		UNITIII	
5.	(a)	Prove that Pentagonal Lattice is not Modular Lattice.	8
	(b)	Define Distributive Lattice and show that the direct product of any two distributive is distributive.	lattice 8
6.	(c)	Two lattices L & M be Modular if and only if L \times M is Modular.	8
	(d)	Define chain and prove that every chain is distributive lattice.	8
		UNIT—IV	
7.	(a)	Define:	
		(i) Boolean homomorphism	
		(ii) Sub-Boolean Algebra and	
		Simplify the following Boolean Expressions:	
		(iii) $(a'*b'*c) \oplus (a*b'*c) \oplus (a*b'*c')$	
		(iv) $(a * c) \oplus c \oplus [(b \oplus b') * c]$	8
	(b)	Let $\langle p(s), n, \cup, \sim, \phi, s \rangle$ be the algebra of the subsets $s = \{a, b, c\}$ as $g : p(s) \rightarrow B$ be a mapping onto the two element Boolean algebra given as $B = \{0, 1\}$ that $g(x) = 1$, if x contains the element otherwise $g(x) = 0$ then show that g is a Boulean algebra.	} such
8.	(c)	Prove that the intersection of any two subalgebra of a Boolean algebra B is also subal of B.	lgebra 8
	(d)	Prove that the following Boolean identifies:	
		(i) $a \oplus (a' * b) = (a \oplus b)$	
		(ii) $a * (a' \oplus b) = a * b$.	8
		UNITV	
9.	(a)	Write the following Boolean expressions in an equivalent sum of products canonical fithree variables x_1 , x_2 and x_3 :	orm ir
		$(i) \mathbf{x}_1 * \mathbf{x}_2$	
		(ii) $x_1 \oplus x_2$.	8
	(b)	Obtain the product of sums canonical forms of the expression $x_1 x_2' + x_3$.	8
10.	(c)	Simplify the following Boolean expressions using K-map:	
		(i) $E(x, y, z) = x'y'z' + xy'z'$	
		(ii) $E(x, y, z) = xyz' + xyz.$	8
	(d)	Obtain the product of sums canonical forms of the expression:	

125

8

 $[(\mathbf{x}_1 + \mathbf{x}_2) (\mathbf{x}_3 + \mathbf{x}_4)']'$.