$$AQ - 807$$

First Semester M. Sc. (Part-I)(C. B. C. S.)
Examination

(New Course)

MATHEMATICS

Complex Analysis

P. Pages: 6

AQ-807

Time: Three Hours]

[Max. Marks: 80

Note: Solve one question from each unit.

UNIT I

1. (a) Let f be analytic in B (a, R) then prove that $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \text{ for } |z-a| < R,$

where $a_n = \frac{f^{(n)}(a)}{n!}$ and this series has

radius of convergence ≥ R.

- (b) (i) Prove that If f is bounded entire function then f is constant
 - (ii) Evaluate $\int_{r} \frac{ez^2}{(z-i)^4} dz, r(t) = 2e^{it} \quad 0 \le t \le 2\pi$

P.T.O.

AQ-807

(d) Let $f(z) = \sum_{n=0}^{\infty} z^n$ and $g(z) = \sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{1+z}{2}\right)^n$

continuation of each other.

Show that f and g are direct analytic

8

2. (c) Let $f: G \to C$ be a function suppose that $\overline{B}(a,r) \subset G(r > 0)$.

If $r(t) = a + re^{it} \ 0 \le t \le 2\pi$ then prove that, $f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w - z} dw \text{ for } |z - a| < r$

Also find the value of $\int_{r}^{r} \frac{d^{z}}{z + \pi i}$, where r is

|z + 3i| = 1. 8

- (d) (i) Prove that if P(z) is non-constant polynomial function then there is a complex no. 'a' such that p(a)=0.
 - (ii) Prove that zeroes of analytic functions are isolated. Also find the zeroes of

$$f(z) = z^7 + 2z^6$$

UNIT II

- (a) Let G be a Region, let f be function from G to \$\dip\$ be a continuous function such that \$\int f = 0\$, for every triangular path in G. Then T prove that 'f' is analytic function.
 - (b) (i) Express f (z) = $\frac{1}{2z^2+5z-3}$ as a Taylor's series in the Region | z | < 1.

(ii) Obtain Taylors series of the function
 f(z) = sinhz. Also find radius of convergence.

(c) State and prove Maximum Modulus theorem.
 Also show that sin z is unbounded for z ∈ ¢.

(d) Prove that, a non – constant analytic function maps open set into open set.
8

UNIT III

5. (a) State and prove Casorati Weierstrass theorem.

(b) Expand
$$\frac{1}{z(z^2-3z+2)}$$
 in

(i) ann (0,0,1)

(ii) ann (0,1,2) and (iii) ann $(0,2,\infty)$. 8

(c) State Rouche's Theorem. Also show that 3 zeros of the function z⁴ - 7z - 1 lie inside the ann (0,1,2).

AQ-807

3

P.T.O.

(d) An isolated signularity z = a of the function f (z) is Removable iff
 lim (z - a) f (z) = 0. Prove this.
 z → a

UNIT IV

7. (a) Let f be analytic in the Region G except for the isolated singularity a₁,a₂..... a_m. Let r be a closed rectifiable curve not passing through a₁,a₂..... a_m then prove that

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) dz = \sum_{K=1}^{m} n(r, a_K) \operatorname{Res}(f, a_K)$$

Hence find residue of function $e^{2/z}$. Also find the value of integral $\int_{r}^{z} e^{2/z}$ where r is a closed curve about z = 0.

- (b) Show that $\int_{0}^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 1}}, \text{ for } a > 1$
- (c) (i) If { f_n } ⊆ H (G) converges to f in
 H (G) and each f_n never vanishes on G
 then prove that either f ≡ 0 or f never
 vanishes on G.

(ii) Evaluate $\int_{r} \frac{dz}{z^4 + z^3 - 2z^2}$, where r is

closed curve |z| = 3.

(d) Show that $\int_{0}^{\infty} \frac{x^{-C}}{1+x} dx = \frac{\pi}{\sin \pi c}$ 0 < c < 1

UNIT V

9. (a) Find analytic continuation of

$$\int_{0}^{\infty} (1+t) e^{-zt} dt, \text{ for Re } z < 0.$$

- (b) Define Natural boundary.
 Explain power series method of analytic continuation.
 8
- 10. (c) Let r: [a,b] → ¢ be a path from a to b.
 Let {(f_t,D_t): 0 ≤ t ≤ 1} and {(g_t,B_t): 0 ≤ t ≤ 1} be analytic continuation along r such that [f₀]_a=[g₀]_a then prove that [f₁]_b=[g₁]_b.