AU-218

M.Sc. (Part-1) Semester-I (C.B.C.S. Scheme) Examination 103: MATHEMATICS

(Complex Analysis)

Time: Three Hours

[Maximum Marks: 80

Note: — Solve ONE question from each Unit.

UNIT-I

1. (a) State and prove fundamental theorem of algebra.

2÷6

- (b) Define zero of an analytic function with multiplicity m, where $m \in \mathbb{N}$. Also show that zeros of analytic function are isolated.
- 2. (c) Define analytic function. Let $f: G \to \mathbb{C}$ be a function with $\overline{B}(a, r) \subseteq G$, (r > 0). If

$$\gamma(t) = a + re^{it}, \ 0 \le t \le 2\pi \text{ then prove that } f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{n-1}} \, dw \text{ for } |z-a| \le r$$

and hence evaluate:

$$\int_{\gamma} z^{-2} e^{iz} dz, \text{ where } \gamma(t) = e^{it}, \ 0 \le t \le 2\pi.$$

(d) Let f be analytic in $|z| \le 5$ and suppose $|f(z)| \le 10$, for all z in side |z-1| = 3. Then find the bounds of $f^{(3)}(1)$ and $f^{(3)}(0)$.

UNIT-II

- 3. (a) Let G be a region and suppose that f is a non-constant analytic function on G. Then show that for any open set U in G, f(U) is open.
 - (b) Define index of a closed curve and evaluate $\int_{\gamma} \frac{dz}{z^2 + 1}$ where γ is a closed curve not passing

through i and –i. 2–6

- (c) Let G be an open set and let f: G → C be differentiable function, then show that f is analytic on G.
 - (d) Find Taylor's series for $f(z) = \sin^3 z$ about z = 0 and evaluate:

$$\int_{\gamma} \frac{dz}{z^2 - 4}$$
, where γ is $|z - 1| = 2$.

VOX-34801 1 (Contd.)

UNIT--III

5. (a) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series for the following region:

 $1 < |z| \le 3$.

- (b) (i) Define essential singularity
 - (ii) State and prove Casorti-Wierstrass theorem.

2+2+8

6. (c) State and prove Rouche's theorem.

2+6

(d) Let f be analytic in the annulus ann(a; R_1 , R_2) then prove that $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n$, where

the convergence is absolute and uniform over ann (a; r_1 , r_2), if $R_1 \le r_1 \le r_2 \le R_2$. Also

show that the coefficients a_n are given by formula $a_n = \frac{1}{2\pi i} \int \frac{f(z)}{(z-a)^{n-1}} dz$, where

 γ is a circle |z - a| = r, for any r, $R_1 < r < R_2$.

UNIT-IV

7. (a) State and prove Hurwitz's theorem.

2-6

- (b) Evaluate $\int_{C} \frac{x^2}{1-x^4} dx$.
- 8. (c) Evaluate $\int_{1}^{\infty} \frac{d\theta}{1 3\cos^2\theta}$.
 - (d) State and prove Hadamard's three circle theorem.

2+6

UNIT-V

9. (a) State and prove Schwartz Reflection principle.

 2 ± 6

- (b) Let $r:[0, 1] \to \mathbb{C}$ be a path from a to b and let $\{(f_1, D_1) : 0 \le t \le 1\}$ and $\{(g_1, B_1) : 0 \le t \le 1\}$ be analytic continuous along r such that $[f_n]_a = [g_0]_a$. Then prove that $[f_n]_b = [g_n]_b$.
- 10. (c) Define natural boundary. Explain power series method of analytic continuation.
 - (d) Let f be an entire function and let {a_n} be the non-zero zeros of f repeated according to multiplicity; suppose f has a zero at z = 0 of order m ≥ 0 (a zero of order m = 0 at z = 0 means f(0) ≠ 0). Then prove that there is an entire function g and a sequence of integers {p_n} such that

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} E_{p_n} \left(\frac{z}{a_n} \right).$$

VOX—34801 2 125