2+6

2+6

M.Sc. (Part—I) Semester—I (C.B.C.S. Scheme) Examination 103; MATHEMATICS

(Complex Analysis)

Time: Three Hours

[Maximum Marks: 80

N.B. :— Solve **ONE** question from each unit.

UNIT-I

1. (a) Let $f: G \to \mathbb{C}$ be a function with $\overline{B}(a,r) \subseteq G$ (r>0). If $\gamma(t)=a+re^{it}, \ 0 \le t \le 2\pi$

then prove that, $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw, |z-a| < r$ and hence evaluate $\int_{\gamma} \frac{dz}{z+\pi i}$, where

 $\gamma \text{ is } |z + 3i| = 1.$

- (b) State and prove Cauchy's theorem.
- 2. (c) Define:
 - (i) Zero of an analytic function with multiplicity m
 - (ii) Entire function. 2+2
 - (d) (i) If f is bounded entire function then show that f is constant.
 - (ii) State and prove fundamental theorem of algebra. 2+6

UNIT—I

- 3. (a) Define an index of a closed curve and show that it is an integer. 2+6
 - (b) (i) Evaluate $\int_{\gamma} \frac{dz}{z^2 + 1}$, where γ is a closed curve not passing through i and -i.
 - (ii) Evaluate $\int_{\gamma} \frac{dz}{z^2 4}$, where γ is |z 1| = 2.
- 4. (c) State and prove maximum modulus theorem.

(d) Let G be a region and suppose that f is nonconstant analytic function on G. Then prove that for any open set U in G, f(U) is open.

UNIT—III

- 5. (a) State and prove Casorati Weistrass theorem.
 - rem. 2+6
 - (b) Prove that an isolated singularity z = a of a function f(z) is removable iff $\lim_{z \to a} (z a) f(z) = 0$.

6. (c) State Rouche's theorem and show that all roots of $z^7 - 5z^3 + 12 = 0$ lie between the circles |z| = 1 and |z| = 2.

- (d) Define:
 - Essential singularity
 - (ii) Isolated singularity
 - (iii) Pole of order m
 - (iv) Removable singularity.

2+2+2+2

WPZ—8322 1 (Contd.)

UNIT--IV

7. (a) State and prove Cauchy Residue Theorem.

2+6

(b) Show that $\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}$.

8

8. (c) State and prove Hadamard's three circle theorem.

2+6

(d) Evaluate $\int_{0}^{\pi} \frac{d\theta}{a + \cos \theta}$ where a > 1 and hence show that $\int_{0}^{\pi} \frac{d\theta}{(a + \cos \theta)^{2}} = \frac{\pi a}{(a^{2} - 1)^{3/2}}.$

UNIT---V

9. (a) State and prove Weistrass Factorization theorem.

2 + 6

- (b) Let $f(z) = \sum_{n=0}^{\infty} z^n$ and $g(z) = \sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{1+z}{2} \right)^n$, show that f and g are direct analytic continuation of each other.
- 10. (c) Show that unit circle is a natural boundary of the function $1 + \sum_{n=0}^{\infty} z^{2^n}$.
 - (d) Let $\gamma:[0,1]\to\mathbb{C}$ be a path from a to b and let $\{(f_i,D_i):0\leq t\leq 1\}$ and $\{(g_i,B_i):0\leq t\leq 1\}$ be analytic continuous along γ such that $[f_0]_a=[g_0]_a$. Then prove that $[f_1]_b=[g_1]_b$.

WPZ 8322