M.Sc. (Part—I) Semester—I (C.B.C.S. Scheme) Examination 105: MATHEMATICS (Differential Geometry)

Time: Three Hours] [Maximum Marks: 80

N.B.: — Solve one question from each unit.

UNIT-I

1. (a) Find the surface area of anchor ring given by

 $\bar{r} = ((b + a \cos u) \cos v, (b + a \cos u) \sin v, a \sin u),$

where $0 \le u \le 2\pi$ and $0 \le v \le 2\pi$.

6

- (b) Explain:
 - (i) Representation of a right helicoid.
 - (ii) Representation of the general helicoid.

6 4

- (c) Find the parametric directions and the angle between the parametric curves.
- (p) Prove that the position vector of any point on the surface of revolution generated by the curve [g(u), 0, f(u)] in the XOZ plane is r = (g(u) cos v, g(u) sin v, f(u)), where v is angle of rotation about z-axis.
 - (q) Prove that the metric E $du^2 + 2F dudv + G dv^2$ is invariant under a parametric transformation.
 - (r) For the cone with vertex at the origin and semi-vertical angle α, prove that the tangent plane is the same at all points on the generating line.

UNIT-II

- 3. (a) A helicoid is generated by the screw motion of a straight line skew to the axis. Find the curve coplanar with the axis which generates the same helicoid.
 - (b) Prove that the curves of the family $\frac{v^3}{u^2}$ = constant are geodesics on a surface with the metric $v^2du^2 2uv \,du \,dv + 2u^2 \,dv^2$, u > 0, v > 0.
- 4. (p) Prove that any curve u = u(t), v = v(t) on a surface r = r(u, v) is a geodesic if and only if the principal normal at every point on the curve is normal to the surface.
 - (q) Show that on a right helicoid, the family of curves orthogonal to u cos v = constant is the family $(u^2 + a^2) sin^2v = constant$.

UNIT—III

5. (a) Prove that, the components λ , μ of the geodesic curvature vector are given by :

$$\lambda = \frac{1}{H^2} \frac{U}{v'} \frac{\partial \Gamma}{\partial v'} = -\frac{1}{H^2} \frac{V}{u'} \frac{\partial \Gamma}{\partial v'}$$

$$\mu = \frac{1}{H^2} \frac{V}{u'} \frac{\partial \Gamma}{\partial u'} = -\frac{1}{H^2} \frac{U}{v'} \frac{\partial \Gamma}{\partial u'}$$

with s as a parameter.

8

(b) Find the Gaussian curvature at a point (u, v) of the anchor ring

$$r = ((b + a \cos u) \cos v, (b + a \cos u) \sin v, a \sin u)$$

where $0 \le u, v \le 2\pi$

- 6. (p) Prove that two surfaces of the same constant curvature are locally isometric.
 - (q) Prove that, if a mapping of a surface S onto a surface S* is both geodesic and conformal, then it is an isometry or a similarity mapping.

UNIT-IV

- 7. (a) Show that in vector space the old components can be expressed in terms of new components and new components can be expressed in terms of old components.
 - (b) Explain:
 - (i) Dual Space
 - (ii) Contraction of Tensor.

8

8

8. (p) Prove that, in order that n^{r+s} number $T_{i_1,i_2,...,i_r}^{i_1,i_2,...,i_r}$ associated with each basis of v' can be regarded as the components of tensor T of type (r, s), it is necessary and sufficient that for any r covariant vectors $\alpha, \beta, ..., \gamma$ the expression:

$$T_{j_1,j_2,...,j_s}^{i_1,i_2,...,i_r} \; \lambda^{j_1} \; \mu^{j_2} \; ... \; \nu^{j_s} \cdot \alpha_{i_1} \; \beta_{i_2} \; \; \gamma_{i_r}$$

shall be invariant under a change of basis of v'.

8

(q) Prove that any tensor of second order can be expressed as sum of symmetric tensor and skew-symmetric tensor.
8

UNIT---V

- 9. (a) Show that two operations of contraction and covariant differentiation are commutative. 8
 - (b) Show that:

$$(A_{ij} + B_{ij})_{j,k} = A_{ij,k} + B_{ij,k},$$

where (,) denotes covariant differentiation.

8

- 10. (p) Prove that covariant differentiation maps tensor field of class r and type (m, p) into the tensor field of (r-1) and type (m, p+1).
 - (q) Prove that the differentiation property implies that the space of tangent vectors is n-dimensional.

8