UNIT IV

- 7. (a) (i) Define residue of a function. Hence find the value of $\int_{r}^{\infty} e^{2/z} dz$ where r is |z|=1.
 - (ii) Suppose f has a pole of order m at z=a and put $g(z)=(z-a)^m f(z)$; then prove

that Res (f; a) =
$$\frac{1}{(m-1)!} g^{(m-1)}(a)$$
.

- (b) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{3 + 2\cos\theta}$. 8
- 8. (c) State and prove 'Hadamard's three circle theorem.
 - (d) Show that $\int_{0}^{\infty} \frac{x^{-c}}{1+x} dx = \frac{\pi}{\sin \pi c} \text{ if } 0 < c < 1.$

UNIT V

9. (a) If $\{f_n\}$ is a sequence in H(G) and f belongs to $C(G; \mathbb{C})$ such that $f_n \to f$ then prove that f is an analytic and also prove that $f_n^{(k)} \to f^{(k)}$ for each integer $k \ge 1$.

First Semester M.A./M.Sc. (Part – I) (CBCS)
Examination

(Old)

MATHEMATICS

103 - Complex Analysis - I

P. Pages: 5

Time: Three Hours]

[Max. Marks: 80

Note: Solve One question from each unit.

UNIT I

1. (a) Het $f: G \to \subset$ be analytic and suppose \overline{B} (a; r) \subset G (r > 0). If $r(t) = a + re^{it}$; $0 \le t \le 2\pi$; then prove that

$$f(z) = \frac{1}{2\pi i} \int_{r}^{\infty} \frac{f(w)}{w-z} dw$$
, for $|z-a| < r$

Also evaluate $\int_{r}^{\infty} \frac{z^2}{4-z^2} dz$ where r is |z+1|=2

6+2

(b) (i) If f is analytic in B(a,R) and suppose that r is a closed curve in B(a,R). Then prove that ∫ f(z) dz=0.

AQ-800

P.T.O.

- (ii) Evaluate $\int_{|z|=4}^{\infty} \frac{e^z \cos z}{(z-\pi)^3} dz.$
- 2. (c) State and prove Liouville's theorem. Also show that $f(z) = \sin z$, $z \in C$ is not bounded. 6+2
 - (d) (i) If $g(w) = \int_{c}^{\infty} \frac{2z^2 z 2}{z^{-w}} dz$ then show that $g(2) = 8\pi i$. What is the value of g(w) when |w| > 3.
 - (ii) Also prove that analytic functions are infinitely differentiable. 4

UNIT II

- 3. (a) State and prove Morera's theorem. 8
 - (b) (i) Expand $f(z) = \frac{1}{z^2 + 4z + 3}$ in |z| < 1 and
 - (ii) Expand $f(z) = \sin^3 z$ about z = 0. 4+4
- 4. (c) State and prove Schwarz's lemma. 8

(d) Let G be a region and let f be an analytic function on G with zeros at a₁, a₂ ----- a_m. (repeated according to multiplicity). If r is a closed rectifiable curve in G which does not pass through any point a_k then prove that

$$\frac{1}{2\pi i} \int_{r}^{r} \frac{f^{1}(z)}{f(z)} dz = \sum_{k=1}^{m} n(r; a_{k}).$$
 8

UNIT III

- (a) If f has an isolated singularity at 'a' then prove that the point z = a is a removable singularity iff lim (z-a) f(z)=0.
 - (b) Show that the function $f(z) = z^4 7z 1$ has three zeros inside the ann (0; 1, 2)
- 6. (c) State and prove Casorti-wierstrass theorem.
 - (d) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in the Laurent's series

for the following region.

- (i) |z| < 1
- (ii) 1 < |z| < 3 and
- (iii) |z| > 3.

8

AQ-800

3

P.T.O.

(b) Let f be an entire function and let {a_n} be the non-zero zeros of f repeated according to multiplicity; suppose f has a zero at z=0 of order m≥0 then prove that there is an entire function 'g' and a sequence of integers {P_n} such that

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} E_{P_n}(z/a^n).$$
 8

- 10. (c) If $|z| \le 1$ and $p \ge 0$ then prove that $|1 E_p(z)| \le |z|^{P+1}$
 - (d) Show that :--
 - (i) H(G) is a complete metric space and
 - (ii) If $\{f_n\}$ C H (G) converges to F in H (G) and each f_n never vanishes on G then either $f \equiv 0$ or f never vanishes on G.

8

www.sgbauonline.com