Show that the minimum value of f(x, y, z) is given by

$$x^2 = \frac{u}{2a(u+a)}$$
; $y^2 = \frac{u}{2b(u+b)}$; $z^2 = \frac{u}{2c(u+c)}$

where u is the positive root of the equation. $u^3-(bc+ca+ab)u-2abc=0$ (schlomilch). 8 First Semester M.Sc. (Part - I) (CBCS) Examination (New Course)

MATHEMATICS

Paper – I Real Analysis

P. Pages: 6

Time: Three Hours]

[Max. Marks: 80

Note: Solve any One question from each unit.

UNIT I

- (a) (i) If f is continuous on [a, b] then prove that f∈ R(α) on [a, b].
 - (ii) If P is a refinement of P them prove that $U(P, F, \alpha) \le U(P, f, \alpha)$ 4
 - (b) Define two functions β_1 , β_2 as follows $\beta_j(x) = 0$ if x < 0, $\beta_j(x) = 1$ if x > 0 for j = 1, 2, and $\beta_1(0) = 0$, $\beta_2(0) = 1$.

Let F be a bounded function on [-1, 1]

- (i) Prove that $f \in R(\beta_1)$ if and only if $f(0^+) = f(0)$ and then $\int f d\beta_1 = f(0)$
- (ii) State a similar result for β_2 .

8

P.T.O.

AQ-805

- (c) Define a rectifiable curve. Given a curve γ whose derivative γ is continuous on [a, b]. Show that γ is a rectifiable curve and has length ∫ | γ(t) | dt.
 - (d) State and prove fundamental theorem of integral calculus for vector valued function.

UNIT II

- (a) State and prove Cauchy's criterion for uniform convergence of a sequence of a functions {fn(x)}.
 - (b) Given {fn(x)} is a sequence of continuous functions defined on a compact set E converging to a continuous function f(x) on E. Assume fn(x) ≥ f_{n+1}(x), ∀x ∈ E n = 1, 2, 3, -. Then show that fn(x) → f(x) uniformly on E.
- (c) Prove that there exists a real continuous function on the real line which is nowhere differentiable.

(d) If X is a metric space, C(x) will denote the set of all complex valued continuous functions with domain X. Prove that C(x), the metric space is complete.

UNIT III

5. (a) Suppose the series $\sum_{n=0}^{\infty} C_n x^n$ converges for |x| < R and define.

$$f(x) = \sum_{n=0}^{\infty} C_n x^n, \qquad (|x| < R)$$

Then prove that $\sum_{n=0}^{\infty} c_n x^n$ converges uniformly on $[-R+\in$, $R-\in$], no matter which $\epsilon>0$ is chosen. Prove that f is continuous and differentiable in (-R,R) and

$$f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}$$
 (|x|

- (b) Prove that the product of two convergent series converges if atleast one of the series converges absolutely.
 8
- (c) State and prove Abel's theorem for the power series.
 - (d) Prove or disprove that "The product of two convergent series is always convergent". 8

UNIT IV

- (a) For A∈L(Rⁿ, R^m), set of all linear transformations of vector space Rⁿ into vector space R^m, define the norm ||A||.
 Hence prove
 - (i) If A∈L(Rⁿ, R^m) then ||A|| < ∞ and A is uniformly continuous mapping of Rⁿ into R^m.
 - (ii) If A, B∈L(Rⁿ, R^m) and C is a scalar then prove that

$$||A+B|| \le ||A|| + ||B||$$
 and

||CA||≤|C|.||A||

(b) Suppose E be an open set in Rⁿ and f:E→R^m and x∈E.
Define differentiability of f at x∈E. If f is differentiable at x∈E then prove that it is unique.
8

UNIT IV

(c) Suppose f is defined in an open set ECR². Suppose D₁f; D₂₁f and D₂f exist, at every point of E and D₂₁ f is continuous at some point (a, b) ∈ E. Then prove that D₁₂f exists at (a, b) and (D₁₂f) (a, b) = (D₂₁f) (a, b).

8

(d) Suppose f maps a convex open set ECRⁿ into R^m, f is differentiable in E and there is a real number M such that || f'(x) || ≤ M for every x∈E. Then prove that | f(b)-f(a) | ≤ M | b-a|. If, in addition f'(x)=0 for all x∈E then prove that f is constant.

UNIT V

- (a) State the prove Implicit function theorem.
 - (b) If f maps an open set ECRⁿ into R^m. Define Jacobian of f at x. If U = cos x, V = sin x. cos y and w = sin x.sin y. cos z then show that

$$\frac{\partial (u, v, w)}{\partial (x, y, z)} = (-1)^2 \sin^3 x \cdot \sin^2 y \cdot \sin z$$

- 10. (c) Let A be an open subset of Rⁿ and assume that f:A→Rⁿ has continuous partial derivatives D_if_i on A. If Jacobian determinant If (x)≠0 for all x in A, then prove that f is an open mapping.
 - (d) If $f(x, y, z) = (a^2x^2 + b^2y^2 + c^2z^2)/x^2y^2z^2$, where $ax^2 + by^2 + cz^2 = 1$ and a, b, c are positive.

AQ-805

www.sgbauonline.com

Show that the minimum value of f(x, y, z) is given by

$$x^2 = \frac{u}{2a(u+a)}$$
; $y^2 = \frac{u}{2b(u+b)}$; $z^2 = \frac{u}{2c(u+c)}$

where u is the positive root of the equation. $u^3-(bc+ca+ab)u-2abc=0$ (schlomilch). 8

