M.Sc. (Part—I) Semester—I (C.B.C.S. Scheme) Examination 101:MATHEMATICS (Real Analysis)

Time: Three Hours [Maximum Marks: 80

Note:— Solve any **ONE** question from each unit.

UNIT-I

- 1. (a) Prove that, a necessary and sufficient condition for $f \in R(\alpha)$ on I is that for every $\epsilon > 0$, \exists a partition P on I such that $U(P) L(P) < \epsilon$.
 - (b) If $f \in R(\alpha)$ and $g \in R(\alpha)$ on [a, b] then prove that :
 - (i) $f + g \in R(\alpha)$
 - (ii) $f \cdot g \in R(\alpha)$.

8

- 2. (c) Let $f \in R(\alpha)$ on [a, b], $m \le f \le M$. Let the function F be continuous on [m, M] and h(x) = F(f(x)) on [a, b]. Then prove that $h \in R(\alpha)$ on [a, b].
 - (d) Define:
 - Simple closed curve
 - (ii) Closed curve

If $f(x) = \begin{cases} 0, & x \text{ is irrational} \\ 1, & x \text{ is rational} \end{cases}$

then show that $f \notin R$ on [a, b] for any a < b.

8

UNIT-II

3. (a) State and prove Weierstrass approximation theorem.

10

- (b) Show that the series $\sum \frac{x}{(nx+1)\{(n-1)x+1\}}$ is uniformly convergent on any interval, [a, b], 0 < a < b, but not uniformly on [0, b].
- 4. (c) For n = 1, 2, ... and x real, $f_n(x) = \frac{x}{1 + nx^2}$. Show that $\{f_n\}$ converges uniformly to a function f and that the equation $f'(x) = \lim_{n \to \infty} f'_n(x)$ is correct if $x \neq 0$ but false if x = 0.

8

(d) Show that $\lim_{m\to\infty}\lim_{n\to\infty}\left[\cos m!\ \pi x\right]^{2n}$ is everywhere discontinuous function which is not Riemann integrable.

UNIT—III

5. (a) State and prove Taylor's theorem.

8

(b) If R is the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ then prove that, radius of

convergence of the power series
$$\sum_{n=1}^{\infty} n a_n x^{n-1}$$
 is also R.

WPZ—8320 1 · (Contd.)

6. (c) Show that:

(i)
$$\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, -1 \le x \le 1$$

(ii)
$$\frac{1}{2} [\log (1+x)]^2 = \frac{x^2}{2} - \frac{x^3}{3} \left(1 + \frac{1}{2}\right) + \frac{x^4}{4} \left(1 + 1\frac{1}{2} + \frac{1}{3}\right) - \dots, -1 \le x \le 1$$
 8

(d) State and prove uniqueness theorem for the power series.

8

UNIT--IV

- 7. (a) Let Ω be the set of all invertible linear operators on \mathbb{R}^n :
 - (i) If $A \in \Omega$, $||A^{-1}|| = \frac{1}{\alpha}$, $B \in L(\mathbb{R}^n)$ and $||B A|| \le \alpha$, then prove that $B \in \Omega$.
 - (ii) Prove that Ω is an open subset of $L(\mathbb{R}^n)$ and the mapping $A \to A^{-1}$ is continuous on Ω .
 - (b) Prove that the function f(x, y) = √|xy| is not differentiable at the point (0, 0), but that f_x and f_y both exist at the origin and have the value zero. Hence deduce that these two partial derivatives are continuous except at the origin.
- 8. (c) Suppose \bar{f} map an open set $E \subset R^n$ into R^m . Then $\bar{f} \in \ell'(E)$ if and only if the partial derivatives $D_i f_i$ exist and are continuous on E for $1 \le i \le m$, $1 \le j \le n$.
 - (d) Show that the function 1 where:

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{if } x^2 + y^2 \neq 0\\ 0, & \text{if } x = y = 0 \end{cases}$$

is continuous, possesses partial derivatives but is not differentiable at the origin.

UNIT---V

9. (a) State and prove Implicit function theorem.

12

8

(b) Find the maximum and minimum value of the function:

$$f(x, y) = 4x^2 - xy + 4y^2 + x^3y + xy^3 - 4.$$

- 10. (c) Suppose f is a G'-mapping of an open set E ⊂ Rⁿ into Rⁿ, f'(a) is invertible for some a ∈ E, and b = f(a). Then prove that there exist an open sets U and V in Rⁿ such that a ∈ U, b ∈ V, f is one to one on U and f(U) = V.
 - (d) Find the maximum and minimum values of $x^2 + y^2 + z^2$ subject to the conditions

$$\frac{x^2}{4} + \frac{y^2}{5} + \frac{z^2}{25} = 1$$
 and $z = x + y$.