#### **UNIT IV**

- 7. (a) Prove that every compact subset of a Hausdroff space is closed. 8
  - (b) Show that in a T<sub>2</sub>-space, a convergent sequence has a unique limit. 8
- 8. (c) Show that the property of being a Ist axiom space is hereditary property. 8
  - (d) Prove that a topological space X is a Tospace if the closures of distinct points are distinct.

#### UNIT V

- 9. (a) Show that every regular Lindelöf space is normal.
  - (b) State and prove Urysohn's Lemma. 10
- 10. (c) Show that regularity is hereditary property.
  - (d) Prove that Every compact Hausdroff space is normal.

.

430

First Semester M. Sc. (Part – I) (C. B. C. S - Pattern) Examination

(Old Course)

### **MATHEMATICS**

Paper – IV Topology – I

P. Pages: 4

Time: Three Hours]

[Max. Marks: 80

Note: Solve one question from each unit.

#### UNIT I

- (a) Prove that If A ≤ B and B ≤ A then A ~ B.
  - (b) Show that  $\%_0 \%_0 = \%_0$ ,  $\%_0 C = C$ , CC = C where,  $\%_0$  is cardinality of countable set. 8
- (c) Show that the set of all real numbers is uncountable.
  - (d) Show that each ordinal number "α" is the order type of the set Wα, where Wα is the set of all ordinal numbers.

AQ-801

P.T.O.

# UNIT II

- 3. (a) Prove the followings:
  - (i)  $e(\phi) = X$
  - (ii)  $e(E) \subseteq CE$
  - (iii) e(E) = e(ce(E)), and
  - (iv)  $e(AUB) = e(A) \cap e(B)$  8
  - (b) Prove that the family f of all closed subsets in a topological space has the following properties.
    - (i) The intersection of any number of members of f is a member of  $\overline{f}$ .
    - (ii) The union of any finite number of members of f is a member of  $\overline{f}$ . 8
- 4. (c) Define topological space and

Let  $x = \{1, 2, 3, 4, 5\}$  and

 $J = \{\phi, \{2\}, \{3, 4\}, \{2, 3, 4\},$ 

 $\{1, 3, 4\}$   $\{1, 2, 3, 4\}$ , X} then

find exterior of

- (i)  $A = \{3\}$
- (ii)  $B = \{1, 2\}.$

8

(d) If A and B are subset of topological space (X, J). Then prove that

d(AUB) = d(A) U d(B)

 $d(A \cap B) \subseteq d(A) \cap d(B)$ 

٠8

# UNIT III

- 5. (a) Define compact set and show that every closed subset of a compact space is compact.
  - (b) Prove that a compact subset of a topological space is countably compact. 8
- 6. (c) Define the following term:
  - (i) Open mapping
  - (ii) Closed mapping
  - (iii) Homeomorphism
  - (iv) Continuous mapping.

8

(d) Show that the components of a topological space (X, J) are closed subset of X. 8