converges to a point $x \in X$, then show that x is a limit point of the set E. 8

UNIT V

- (a) Show that a topological space X is normal iff for any closed set F and open set G containing F, there exist an open set G* such that F ⊆ G* and C(G*) ⊆ G.
 - (b) Show that regularity is a topological property.

. 10. (c) Show that every regular T₀-space is a

- (d) Explain the following terms :-
 - (i) Regular space

T₃-space.

- (ii) Normal space
- (iii) Completely regular space. 8

First Semester M. Sc. (Part – I) (CBCS - Pattern) Examination

(New Course)

MATHEMATICS

Paper – IV Topology - I

P. Pages: 4

Time: Three Hours]

[Max. Marks: 80

Note: Solve one question from each unit.

UNIT I

- 1. (a) State and prove Cantor theorem.
 - (b) Show that addition of order type is not commutative. 8
- 2. (c) Show that every infinite set is equipotent to a proper subset of itself. 8
 - (d) Define denumerable set and show that $2^{\aleph_0} = C$.

AQ-808 4

AQ-808

430

P.T.O.

8

UNIT II

- (a) If A, B and E are subsets of the topological space (X, J), then show that the derived set has the following properties
 - (i) If $A \subseteq B$, then $d(A) \subseteq d(B)$
 - (ii) If $x \in d(E)$ then $x \in d(E) \setminus \{x\}$) 8
 - (b) Define base and subbase for a topology. Prove that if E is a subset of subspace (x*, J*) of a topological space (X, J) then C*(E) = X* ∩C(E).
- 4. (c) Show that for any set E in a topological space C(E) = EUd(E), where 'C' is a closure operator.
 - (d) State the following :-
 - (i) Exterior axioms
 - (ii) Interior axioms
 - (iii) Kuratowski closure axioms.

UNIT III

 (a) If E is a subset of a subspace (X*, J*) of a topological space (X, J) then show that E is a J*-compact iff J-is compact.

- (b) Show that if every two points of a set E are contained in some connected subset of E, then E is a connected set.
- 6. (c) Prove that a mapping f of X intoX* is open if and only if f(i(E)) ⊆ i* (f(E)). for every E ⊆ X.
 - (d) If E = A|B is closed then show that A and B are closed.
 8

UNIT IV

- (a) Define convergent sequence and show that in a Hausdroff space, a convergent sequence has a unique limit.
 - (b) Prove that in a T₁ space X, a pt x is a limit of a set E iff every open set containing x contains an infinite number of distinct points of E.
- (c) Show that every subspace of T₁-space is T₁-space and T₀-space is T₀-space.
 - (d) If $\langle x_n \rangle$ is a sequence of distinct points of a subset E of a topological space X which

AQ-808 3 P.T.O.