M.Sc. (Part—I) Semester—I (C.B.C.S. Scheme) Examination 104: MATHEMATICS

(Topology-I)

Time: Three Hours]

[Maximum Marks: 80

N.B.: - Solve ONE question from each Unit.

UNIT—I			
1.	(a)	Define:	
		(i) Similar sets	
		(ii) Denumerable set	
		(iii) Well-ordered set.	5
	(b)	State and prove Schoeder-Bernstein Theorem.)
2.	(c)	If α and β are ordinal numbers then show that either $\alpha \leq \beta$ or $\beta \leq \alpha$.	,
	(d)	Prove that $2^a \ge a$ for every cardinal number a.)
UNIT—II			
3.	(a)	Show that the union of two topologies for a set need not be a topology for the set, but the intersection of any family of topologies for a set will be a topology for that set. 2+6	
	(b)	Prove that the four Kuratowski closure axioms may be replaced by the single condition $A \cup c(A) \cup c(c(B)) = c(A \cup B) - c(\phi)$ for all subsets $A, B \subseteq X$. Here C is the closure operation on a topological space X .	2

4. (c) Show that for any set E in a Topological space (X, 7), $i(E) = C \subset (CE)$.

(d) Prove that a family **B** of sets is a base for a topology for the set $X = U \{B : B \in B\}$ iff for every B_1 , $B_2 \in B$ and every $x \in B_1 \cap B_2$, there exists a $B \in B$ such that $x \in B \subseteq B_1 \cap B_2$.

VOX-34802 1 (Contd.)

www.sgbauonline.com

UNIT-III

- 5. (a) Define separation of a set. If C is a connected subset of a topological space (X, 7) which has a separation X = A/B then show that either $C \subseteq A$ or $C \subseteq B$.
 - (b) Prove that:
 - (i) Continuous image of a connected set is connected, and
 - (ii) Continuous image of a compact set is compact.

4+4

- 6. (c) Show that a topological space (X, 7) is compact iff any family of closed sets having the finite intersection property has a nonempty intersection.
 - (d) Prove that a mapping f of X into X* is open iff $f(i(E)) \subseteq i^*(f(E))$ for every $E \subseteq X$.

6

UNIT-IV

- 7. (a) Show that a topological space X is a T₀-space iff the closures of distinct points are distinct.
 - (b) Show that every compact subset E of a Hausdorff space X is closed.

8

8

- 8. (c) Prove that in a T₁-space X, a point x is a limit point of a set E iff every open set containing x contains an infinite number of distinct points of E.
 - (d) If x is a point and E a subset of a T₁-space X satisfying the first axion of countability then show that x is a limit point of E iff there exists a sequence of distinct points in E converging to x.

UNIT-V

- (a) Prove that a topological space X is regular iff for every point x ∈ X and open set G containing x there exists an open set G* such that x ∈ G* and c(G*) ⊆ G.
 - (b) Show that a normal space is completely regular iff it is regular.
- 10. (c) Show that a topological space X is completely normal iff every subspace of X is normal.

2

(d) If x and y are two distinct points in a Tichonov space X, then prove that there exists a real-valued continuous mapping f of X such that f(x) ≠ f(y).

VOX-34802