M.Sc. Part-I Semester-I (CBCS Scheme) Examination MATHEMATICS

(Topology-I)

Paper-104

Time: Three Hours]

[Maximum Marks: 80

N.B.:—Solve **ONE** question from each unit.

UNIT—I

- 1. (a) Prove the following:
 - (i) The union of a denumerable number of denumerable sets is a denumerable set.
 - (ii) The set of all rational numbers is denumerable.

4+4

- (b) If f is a similarity mapping of the well-ordered set X onto the subset $Y \subseteq X$, then show that $x \le f_{(x)}$ for all $x \in X$.
- 2. (c) Prove the following:
 - (i) $N_0 N_0 = N_0$
 - (ii) $N_0C = C$

When N_0 is the cardinality of a denumerable set and C is the cardinality of the set of all real numbers.

(d) Show that multiplication of order types is not commutative.

8

UNIT-II

- 3. (a) Define:
 - (i) Topological Space

(ii) Limit point

(iii) Interior of a set

(iv) Neighborhood of a point.

8

- (b) Define relative topology. Prove that $\tau^* = \{G \cap X^* : G \in J\}$ is a topology for X^* , where $X^* \subseteq X$ and (X,τ) is a topological space.
- 4. (c) Show that the union of two topologies for a set need not be a topology for the set, but the intersection of any family of topologies for a set will be a topology for that set.

2+6

(d) Define closed set.

If $x \notin F$, Where F is a closed subset of a topological space (X,τ) , then show that there exists an open set G such that $x \in G \subseteq CF$.

UNIT-III

(a) If a connected set C has a nonempty intersection with both E and the complement of E in a topological space (X,τ), then prove that C has a nonempty intersection with the boundary of E.

WPZ-8323

(b) Define open mapping Show that a mapping f of X into X* is open iff $f(i(E)) \subseteq i^*(f(E))$ for every $E \subseteq X$. 6. (c) Prove that a topological space (x,τ) is compact iff any family of closed sets having the finite intersection property has a nonempty intersection. (d) If f is a continuous mapping of (X,τ) into (X^*, τ^*) then show that f maps every compact subset of X onto a compact subset of X*. 6 UNIT--IV 7. (a) Show that in a Hausdorff space, a convergent sequence has a unique limit. 6 (b) Prove that if f is a mapping of the first axiom space X into the topological space X*, then f is continuous at $x \in X$ iff for every sequence $\langle x \rangle$ of points in X converging to x we have the sequence $\langle f(x) \rangle$ converges to the point $f(x) \in X^*$. 8. (c) Show that a topological space X is a To-space iff the closures of distinct points are distinct. (d) Prove that in a second axiom space, every open covering of a subset is reducible to a countable subcovering. 8 UNIT---V 9. (a) Define: (i) Regular Space (ii) Normal Space (iii) Completely Normal (iv) Completely Regular. 8 (b) Show that a topological space X is normal iff for any closed set F and open set G containing F, there exists an open set G^* such that $F \subseteq G^*$ and $(G^*) \subseteq G$. 8 10. (c) Show that a normal space is completely regular iff it is regular. 8 (d) Prove that regularity is a topological property. 8