UNIT IV

- Discuss the photosubstitution reactions in ruthenium complexes.
 - (b) What is trans effect? Discuss the polarization theory of trans effect.
 - Write the mechanism of substitution reaction in square planar complexes w.r.t. entering ligand as nucleophile.

OR

- Explain the bridge activated complex mechanism for one electron transfer reaction.
- (q) What are isopoly acids and heteropoly acids? Explain with suitable examples.
- Describe the fluxinality of π -allyl metal complexes.

UNIT V

5. Describe the mechanism involved in hydroformylation of $CH_3 - CH = CH_2$ catalysed by cobalt carbonyls.

First Semester M. Sc. - I Examination

PHARMACEUTICAL CHEMISTRY

Paper - 1 1 SA 1 (Inorganic Chemistry)

P. Pages: 5

Time: Three Hours 1

[Max. Marks: 80

Note: All questions are compulsory and carry equal marks.

UNIT I

- What are the conditions that are to be fulfilled for a set of operation to form a group? 6
 - On the basis of matrix representation show that

 - (i) $C_2 \cdot C_2 = E$ (ii) $C_2 \cdot \sigma = S_2 = i$

(c) Discuss high spin and low spin crossover phenomenon in complexes with suitable examples.

OR

- (p) Find out possible symmetry elements present in
 - (i) BF₃ (ii) NH₃ (iii) H₂O

6

AQ-867

P.T.O.

- (q) Construct a multiplication table for C_{2V} point group by taking H₂O as an example. 4
- (r) On the basis of magnetic moment measurements explain [NiCl₄]²⁻ is tetrahedral and [PtCl₄]²⁻ is square planar.

UNIT II

- 2. (a) Explain with suitable examples:
 - (i) SP3d hybridization.
 - (ii) SP³d² hybridization.
 - (b) On the basis of MO diagrams explain why O₂ is paramagnetic while F₂ is diamagnetic. 6
 - (c) Explain why $[Fe(CN)_6]^{4-}$ is inner orbital while $[Fe(H_2O)_6]^{2+}$ is outer orbital octahedral complex.

OR

- (p) Mention the hybridization state of central atom in the following molecules:—
 - (i) BeF₂ (ii) BF₃ (iii) H₂O (iv) IF₅ (v) XeF₄
 5
- (q) Draw MO diagram of [CO (NH₃)₆]³⁺ w.r.t. σ bonding only.

(r) On the basis of VB theory predict why $[FeF_6]^{4-}$ is paramagnetic and $[Fe(CN)_6]^{4-}$ is diamagnetic.

UNIT III

- 3. (a) Explain the crystal field splitting in octahedral complexes.
 - (b) What is spectrochemical series? Why is it so called? Arrange the following ligands in increasing order of their strength:—

 Br. H₂O. NH₃, CN, F, CO

 5
 - (c) What are the factors affecting crystal field stabilization energy of the complexes?

OR

- (p) Deduce the ground term symbol for d² configuration.
- (q) What are the selection rules for electronic transitions in metal complexes? Explain why d-d transitions are usually weak.
- (r) Explain the variation of crystal field splitting energy and heat of ligation for divalent metal ion of first transition series.

AQ-867

P.T.O.

		00.0	1	4
	metals in biologica			6
(b)	What is the role of alkali and alkaline			earth

(c) Write note on 2Fe-2S ferredoxins.

OR

- (p) What is Willkinson's catalyst? Give the cyclic catalytic mechanism of hydrogenation of olefins using it.
- (q) Explain the molecular mechanism of ion transport across the membrane.
- (r) Discuss the role of myoglobin and hemoglobin in oxygen transport phenomenon.

www.sgbauonline.com