6

(r)	Discuss the		classification	of	orbits	under
	inverse	square	e forces.			5

5. (a) State and prove Poisson's Theorem. 5

- (b) Derive an expression for Lagrangian density for Longitudinal Oscillation in elastic rod.
- (c) Explain Poisson's bracket and show that they obey distributive law of algebra.
 5

OR

- (p) Enlist the conditions to be satisified by the function to become Generating function of a Cannonical Transformation.
- (q) Explain the utility of Canonical Transformation.
- (r) How can one convert Discrete System to the continious?

First Semester M. Sc. I (Physics) Examination 1 PHY-2

CLASSICAL MECHANICS

P. Pages: 4

Time: Three Hours]

[Max. Marks: 80

Credit: 4

Note: (1) All questions are compulsory.

- (2) All questions carry equal marks.
- (a) What are conservative forces? Show that for conservative force field, the total energy of a system is always constant.
 - (b) State and prove the work energy relation. What advantages does it have in understanding physical world?
 - (c) What are the limitations of Newtonian Mechanics?

OR

- (p) State D'Alembert's principle.
- (q) A block of mass 'm' slides down an inclined frinctionless plane.

AQ-812

4

330

AQ-812

P.T.O.

		D'Alembert's principle.		(6)	symmetry property related with angular
	(r)	State and explain the principle of virtual work.			co - ordinate (cyclic).
		6	0	(c)	State Hamilton's principle and obtain
	(s)	State and prove the conservation theorem of	•		Lagrangian equations of motion.
	(0)	linear momentum for the motion of a particle.			OR
		1-01-4			ade or archalical Turbulança sur
				(p)	What are Galilean transformations? Show
	10.11				that Lagrangian equations are invariant under
	(a)	Define the term constraint. Explain the types			Galilean transformations.
		of constraints. Give suitable examples of each.		(q)	Deduce Hamilton - Jacobi equation.
		10		(*)	Fundain mindala of last action
	(b)	What are generalised coordinates? Explain		(r)	Explain principle of least action.
		their advantages. How these could be			
		obtained ?		4. (a)	State the features of central force motion.
		OR	- C*		
				(b)	State Kepler's 2 nd law and justify that motio
	(p)	Using D'Alembert's principle obtain Lagrange's			under Harmonic central force is alway bounded.
		equation of motion for a non - conservative			bounded.
		system. 12		(c)	State and prove varial theorem.
	(q)	Show that Lagrangian's equations are invariant			OR
		under Gauge transformation. 4			
		Alacam restaud (LC)		(p)	How two body problem can be reduced to
	(-)	Partie War Control			Equivalent one body problem.
	(a)	Explain Homogeneity of space and time, Isotropy of space.		(q)	Illustrate stability and closure property of
		isotropy of space.			circular orbit under central force.
0	-812	2	×	AO-812	3 P.T.O
•	ULM	-		AV-014	5 F.1.