4

M.Sc. Semester—I (C.B.C.S. Scheme) Examination PHYSICS

1-PHY-3: Quantum Mechanics-I

Time: Three Hours [Maximum Marks: 80 Credit: 4 EITHER 1. What is Photoelectric effect? Deduce Einstein's photoelectric equation. 5 (b) Obtain energy eigen values and eigen functions for a particle in the infinite potential well. 8 (c) An electron and a proton have the same velocity. Compare the wavelengths and phase and group velocities of their DeBroglic waves. 3 OR (p) Give the explanation of Compton effect with the help of quantum theory and find an expression for Compton shift. 6 (q) Obtain energy eigen values and eigen functions for a linear harmonic oscillator. 8 (r) The average period that elapses between the excitation of an atom and the time it radiates is 1.0×10^{-8} sec. Find the inherent uncertainty in the frequency of the photon. **EITHER** (a) Outline Dirac's Bra and Ket notations. 2. 4 (b) Show that Hermitian matrix can be expressed as diagonal matrix. 4 (c) Show that the operators having common set of eigen functions commute to each other. 4 (d) Prove that the fundamental commutation relation $[x, p] = i\hbar$ remains unchanged under unitary transformation. 4 OR (p) Show that, if operator A is Hermitian then: $\int u^* \hat{A} v \, d\tau = \int \hat{A}^* u^* \, v \, d\tau.$ 4 (q) What is unitary transformation? In a unitary transformation show that the operator equation remains unchanged in form. 4 (r) Obtain the Schrödinger equation in matrix form. 4

(s) Show that operator $\left(-i\frac{d}{dx}\right)$ is Hermitian.

EITHER

- (a) Write down the Schrödinger equation for II-atom in spherical polar coordinates and separate it in to radial, polar and azimutal wave equations. Obtain solution of polar wave equation.
 - (b) Obtain the operators L_x , L_y , L_z , L_z and L_z in spherical polar coordinates. 8

OR

- (p) Write down radial wave equation for H-atom, obtain its solution and energy eigen values.
- (q) A ground state wave function of a linear harmonic oscillator is :

$$\psi_0(\mathbf{x}) = A \exp\left(-\frac{\mathbf{m}\omega \mathbf{x}^2}{2\hbar}\right)$$

where A is a constant. Using the raising and lowering operators, obtain the wave function of the excited states of the harmonic oscillator.

EITHER

- 4. (a) What are Pauli's spin matrices? Show that they anticommute in pairs.
 - (b) Determine the total angular momentum that may arise when the following angular momenta are added:
 - (i) $j_1 = 1, j_2 = 1$
 - (ii) $j_1 = 3$, $j_2 = 4$.
 - (c) Obtain eigen values of F and J operators.

OR

- (p) Evaluate the following commutation relations:
 - (i) $[L_x, |L_y, L_z|]$
 - (ii) $[L_x^2, L_y^2]$.
- (q) Obtain the matrix for J, for j = 1.2.
- (r) Evaluate Clebsh-Gordan coefficients for a system having $j_1 1/2$ and $j_2 = 1/2$. 8

EITHER

- 5. (a) Explain the Heisenberg picture. Obtain the equation of motion for an operator in it.
 - (b) If the Hamiltonian H(t) = H⁰ + H'(t), show that the state vectors change in accordance with H'(t) while dynamical variables change in accordance with H⁰ in the interaction picture.
 8

OR

- (p) Use variation method to obtain the ground state energy of hydrogen atom assuming trial function $\psi(r) = Ae^{\lambda t}$, where λ is a variational parameter and A is normalization constant.
- (q) Describe WKB approximation method for a one dimensional case and derive the connection formulae.

WPZ- - 8328 2 2