M.A./M.Sc. (Part-I) Semester-I (C.B.C.S. Scheme) Examination STATISTICS

			(Estimation Theory)	
			Paper—II	
Tir	ne : T	hree	Hours] [Maximum Marks :	80
			N.B.: Solve either A or B part from each question.	
1.	(A)	(a)	Explain:	
			(i) Consistency (ii) Efficiency	
			(iii) MVUE (iv) Likelihood function	8
		(b)	It T_1 is MVUE of θ and T_2 is any other unbiased estimator of θ with efficiency less t	har
			1, then no unbiased linear combination of T_1 and T_2 can be MVUE of θ .	8
			OR	
	(B)	(i)	Explain unbiased estimator and show that sometimes it is absurd.	6
		(ii)	Prove that correlation coefficient between MVUE and another unbiased estimato	r is
			$\rho = \sqrt{E}$ where E is efficiency of unbiased estimator.	10
2.	(A)	(a)	Describe the method of maximum likelihood. Show that MLE need not be unbiased.	. 8
		(b)	Suppose $x_1, x_2,, x_n$ be a r.s. from Cauchy population with pdf $\frac{1}{\pi[1+(x-\theta)]}$) ²]
			Estimate the parameter θ by method of scoring.	8
			OR	
	(B)	(i)	Describe method of moment to estimate the parameter θ . Estimate the parameter μ as σ of Normal distribution by this method.	and 10
		(ii)	State only Cramer Huzurbazar theorem along with all the regularity conditions.	6
3.	(A)	(a)	Let $x_1, x_2,, x_n$ be a r.s. of size n from normal population with mean μ and variate θ , where θ is unknown. Find CRLB for θ .	nce 8
		(b)	State factorization theorem. Let $x_1, x_2,, x_n$ be a r.s. from normal population with method and variance θ_1 , then obtain sufficient statistic for θ_1 and θ_2 .	ean 8
			OR	
VOX34830			1 (Con	.td.)

www.sgbauonline.com

	(B)	(i)	State and prove Cramer Rao inequality.	10
		(ii)	Explain single and multi parameter exponential family.	6
4.	(A)	(a)	State and prove Rao Blackwell theorem.	10
		(b)	Define the term:	
			(î) Completoness	
			(ii) Bounded completeness.	6
			OR	
	(B)	(î)	Let X be a r.v. with	
			$P_e(x) = \theta^2(1 - \theta)^x$; $x = 0, 1, 2,$	
			$(x = -1, 0 < \theta < 1)$	
			Show that this family of distribution is not complete.	8
		(ii)	State and prove Lehman Scheff theorem.	8
5.	(Λ)	(a)	Define the following term:	
			(i) Shortest length C.I.	
			(ii) Shortest expected length C.1.	6
		(b)	Let $x_1, x_2,, x_n$ be a r.s. of size n from $N(\mu, \sigma^2)$. Find shortest length confident interval for μ when :	ence
			(i) σ^2 is known	
			(ii) σ^2 is unknown	10
			OR	
	(B)	(i)	Define '	
			(a) Pivot	
			(b) Confidence coefficient	
			(c) Degree of contidence interval.	6
		(ii)	Construct (1-a) 100% confidence interval for σ^2 on the basis of r.s. from $N(\mu,$ when μ is known.	, σ²) 10
VOX	(<u> 348</u> :	30	2	125