M.Sc: (Part—I) Semester—I (C.B.C.S. Scheme) Examination STATISTICS

(Stochastics Processes)

Paper—III

Time: Three Hours

[Maximum Marks: 80

N.B.:— Solve either (A) or (B) part from each question.

- (A) (i) Write the classification of Stochastic Process according to state space and time domain with example.
 - (ii) Define:
 - (a) Gaussian process
 - (b) Transition probability
 - (c) n-step transition probability
 - (d) Markov chain.

8+8

OR

- (B) (i) Define:
 - (a) Markov process
 - (b) Stationary process
 - (c) Order of Markov chain
 - (d) Steady state probability.
 - (ii) Let $P = \begin{bmatrix} \alpha & 1 \alpha \\ 1 \beta & \beta \end{bmatrix}$ be a transition probability matrix of a Markov chain $0 < \alpha, \beta < 1$. Derive $\lim_{n \to \infty} P^n$.
- 2. (A) (i) State and prove Chapman-Kolmogorov equation.
 - (ii) Let $f_{jk}^{(n)}$ denote probability that the system starting from state 'j' reaches to state 'k' for the first time in n jumps and p_{jk}^n denote the probability that the system reaches state k after n jumps obtain relation between p_{jk}^n and $f_{jk}^{(n)}$. 8+8

OR

- (B) (i) Define:
 - (a) Recurrent state
 - (b) Transient state
 - (c) Periodic state
 - (d) Ergodic state.
 - (ii) Define persistent state. Prove that the state j is persistent or transient according as

$$\sum_{n=0}^{\infty} p_{ij}^{(n)} = \infty \text{ or } < \infty.$$
 8+8

WPZ-8348

(Contd.)

- Obtain the expected duration of a game if the gambler starts with initial capital Z and the total capital of two players is 'a' in the classical gambler's ruin problem.
 - Define random walk and gambler's ruin problem. What is the similarity between the two? Show that it is a particular Markov chain. Obtain transition probability if barriers 8+8 are absorbing.

OR

- (B) (i) Define:
 - (a) Absorbing barrier
 - (b) Reflecting barrier
 - (c) Elastic barrier with example.
 - Explain in brief two and three dimensional random walk. $8 \div 8$
- State postulates of Poisson process. Obtain an expression for $P[X(t) = n] = P_n(t)$ 4. (A) (i) (in usual notation). n = 0, 1, 2, ...
 - Show that mean rate i.e. parameter λ of the Poisson process $\{X(t)\}$ can be reasonably estimated by the observation $\frac{X(t)}{t}$ for large t. 8+8

OR

- (B) (i) If X(t) is Poisson process with parameter λ derive mean and variance of X(t).
 - Describe birth death process. Obtain the difference differential equation of birth death process. 8+8
- 5. (A) Define Weiner process and show that it can be regarded as a limit of random walk. 16

OR

- (B) (i) Discuss continuous time continuous state space Markov process with example.
 - Discuss first passage problem in case of Wiener process. 6+10