M.Sc. (Part—I) Semester—II (CBCS Scheme) Examination CHEMISTRY (New)

(Co-ordination Chemistry)

		Paper—V
Tin	Time: Three Hours] [Maximum Marks: 8	
	N.B	3. :— (1) All questions are compulsory and carry equal marks.
		(2) Use of scientific calculator is allowed.
1.	(a)	Calculate the ground term symbol for d ⁴ configuration. Write the Mulliken symbol for its around term.
	(b)	Whether the following configurations in weak octahedral field will contribute orbital magnetic moment to spin-only value? Explain:
		(i) d^{\dagger}
		(ii) d^3
		(iii) d ⁴
		(iv) d^7
		(v) d ⁸
	(c)	Why tetrahedral complexes show more intense absorption band than octahedral complexes? Explain with example.
		OR
	(p)	Discuss the electronic spectra of d ³ and d ⁷ metal ions in weak octahedral field with suitable example using Orgel diagram.
	(q)	Explain the following:
	. 17	(i) Ferromagnetism and
		(ii) Antiferromagnetism. 5
	(r)	What is nephelauxetic effect? Arrange the following ligands in the increasing order of Nephelauxetic series I ⁻ , H ₂ O, NH ₃ , NCS ⁻ , CN ⁻ , F ⁻ .
2.	(a)	On the basis of CFT, predict whether the following complexes would be inert or labile by giving reason: (i) $[Fe(CN)_6]^{4-}$
		(ii) $[Co(H_2O)_6]^{3+}$
		(iii) $[Cr(NH_3)_6]^{3+}$.
	(b)	Compare SN ¹ and SN ² reactions in octahedral complexes on the following points :
		(i) Rate of reaction
		(ii) Geometry of intermediate complex. 5
	(c)	What is base hydrolysis? Explain the mechanism of base hydrolysis of [Co(en) ₂ (NH ₃)Cl] ²⁺ .

(p) Discuss the structure of haemoglobin and its role as an oxygen transport.

(q) Discuss the mechanism of ion transport across the membrane.

Give ar. account on:

(i)

WPZ--3444

(ii)

Transport protein and

Storage protein.

6

5

5

125