M.Sc. (Part-I) Semester-II (CBCS Scheme) Examination

CHEMISTRY (Old) (Upto Winter-2018)

(Physical Chemistry—II)

Paper—VII

		•	
Tin	ne : 1	[Maximum N	1arks : 80
N.E	3. :	-(1) ALL questions are compulsory and carry equal marks.	
		(2) Use of log table and calculator is permitted.	
1.	(a)	Explain the kinetics and mechanism of photochemical reaction between H ₂	and Br ₂ .
			8
	(b)	What are fast reactions? Explain nuclear magnetic resonance method.	. 8
		OR	
	(p)	Discuss the flash photolysis technique for the study of fast reactions.	8
	(q)	Discuss Lotka-Volterra mechanism for oscillating reactions.	8
2.	(a)	By applying HMO theory to cycle-butadiene system derive an expression for delegencegy.	ocalization 8
	(b)	Construct sp ² hybrid orbitals by combining one 2s and two 2p atomic orbestablish the value of angle between the hybrid orbitals.	bitals and 8
		OR	
	(p)	Apply HMO theory to ethylene molecule and find out the HMO energies.	6
	(q)	What are the basic criteria for formation of M.O.s from A.O.s ? Construct	M.O.s by
		LCAO for H ₂ ⁺ molecule ion.	6
	(r)	Explain the physical picture of bonding and antibonding wave functions.	4
VOX	(38.	578 1	(Contd.)

www.sgbauonline.com

3.	(a)	Discuss the phenomena of polymerization and kinetics of polymerization.	6
	(b)	Give a brief account of stability of biological polymers.	4
	(c)	Explain light scattering method to determine molar mass of polymer.	6
		OR	
	(p)	hemoglobin (M - 15.5 kg mol ⁻¹). Calculate number average and mass average mole	ecular
	(a)	mass of sample.	4
	(q)	Discuss polymers with respect to configuration and conformations of macromolec	6
	(r)	Discuss size exclusion chromatography method.	6
4.	(a)	What are the different methods used for monitoring and prevention of corrosion	n ?
	(b)	Discuss Debye Huckel Onsager treatment and its extension.	6
	(c)	Explain the formation of electric double layer with respect to electrode solution inter-	rface 4
		OR	
	(p)	Discuss:	
		(i) Electron transfer processes	
		(ii) Electron Tunneling.	6
	(q)	Explain voltammetry, experimental techniques involved. Also explain concentre polarization phenomenon.	ration 6
	(r)	Discuss the structure of electrified interfaces and electric potentials generated a interfaces.	at the
VOZ	X—38	2 (C	ontd.)

www.sgbauonline.com

- 5. (a) Derive an expression for translational partition function for H₂ molecule at room temperature.
 - (b) Calculate the value of molecular rotational partition function for $N_2(g)$ at 298 K. The moment of inertia is 1.407×10^{-46} kg m² and the symmetry number is 2 for $N_2(g)$. Given :

$$K = 1.381 \times 10^{-23} \text{ JK}^{-1}$$

$$h = 6.626 \times 10^{-34} \text{ J}.$$

(c) Define the concept of distribution and thermodynamic probability.

OR

- (p) Calculate translational partition function of H₂ molecule confined to a 1000 cm³ vessel at room Temp (T 25°C).
- (q) Compare microcanonical, canonical and grand canonical ensemble based on their thermodynamic environment.
- (r) Derive an expression for vibrational partition function and give applications of partition functions.

www.sgbauonline.com