AQ-903

(p) Define the ensemble averaging and give its postulate.

8

725

- (q) Calculate the translational P.F. of the H₂ molecule confined to a 1000 cm³ vessel at room temp. (T = 25°C).
- (r) For a homonuclear diatomic and symmetrical linear polyatomic molecules derive rotational partition function.

$$Z_r = \frac{T}{\sigma \theta_r}$$

Where θ_r = Characteristic rotation temperature, σ = Symmetry number.

M.Sc. (Part-I) Semester-II (CBCS Scheme) Examination CHEMISTRY

(Physical Chemistry)-II

Paper-VII

Time: Three Hours

[Maximum Marks: 80

- **N.B.**:- (1) **ALL** questions are compulsory and carry equal marks.
 - (2) Use of log table and calculator is permitted.
- (a) Discuss the kinetics of branched chain reactions.
 Explain the terms first explosion limit and second explosion limit.
 6
 - (b) What are oscillating reactions? Explain in detail w.r. to Belousov-Zhabotinsky reaction.
 - (c) Describe the stopped flow method for studying kinetics of fast reactions.

OR

- (p) Explain the kinetics and mechanism of thermal reaction between H, and Br,.
 8
- (q) Discuss the flash photolysis technique for the study of fast reactions.
- (r) Discuss the relaxation methods for study of linetics of fast reactions.

UBS-49965

Contd.)

4.

2.	(a)	Apply LCAO-MO method to H ₂ molecobtain expressions for bonding and antibonding levels.					
	(b)	and two	ict Sp ² hybrid orb 2p atomic orbita between the hyb	ils and esta	ablish the value		
					4		
	(c)		Hu d el Molecular e molecule and fi		- •		
			OR				
	(p)	Explain the criteria for forming M.O. and A.O.					
	(q)	Discuss bond order and change density calculation with suitable example.					
	(r)	By applying H. M. O. theory to cyclo-butadier system, derive an expression for delocalization energy			_		
3.	(a)				-		
	(b)	Explain light scattering method to determine molar mass of a polymer.					
	(c)	Define number average and mass average molecular mass of polymer. When Mn and Mw are equal.					
	OR						
	(n)	Write notes on:					
	· AN		ectrophoresis				
			lymer liquid cryst	als.	8		
LBS	4996	i	2		(Contd.)		

(q)	A protein sample consists of an equimolar mix of ribonuclease (M = 13.7 kg mol ⁻¹) hemogle (M = 15.5 kg mol ⁻¹). Calculate number ave	obin				
	and mass average molecular mass of sample.	4				
(r)	Explain the stability of biological polymers.	4				
(a)	Discuss Debye-Huckel-Onsagar treatment and its					
	extension.	6				
(b)	Give advantages and applications of voltametr	y. 4				
(c)	What are different methods used for monitoring and					
	prevention of corrosion?	6				
	OR					
(p)	Describe various theories of ion-solvent interactions.					
		6				
(q).	Give applications of Butler-Volmer equation.	5				
(r)	What is corrosion? Explain different types of corro	sion.				

5. (a) Compare Microcanonical, Canonical and Grand Canonical ensemble based on their thermodynamic environment.

(b) Derive expression for translational partition function for a lightest molecule H₂ at room temperature. 6

(c) Calculate the value of molecular rotational partition function for $N_{2(g)}$ at 298 K. The moment of inertia is $1.407 \times 10^{-46} \text{ kg m}^2$ and the symmetry number is 2 for N_2 (g). Given $K = 1.381 \times 10^{-23} \text{ JK}^{-1}$ $h = 6.626 \times 10^{-34} \text{ JS}$.

OR

UBS 49965

3

(Contd.)