AU-319

M.Sc. (Part-I) Semester-II (CBCS Scheme) Examination CHEMISTRY (New)

(Physical Chemistry—II)

Paper-VII

Time: Three Hours

[Maximum Marks: 80

Note:—(1) All questions are compulsory and carry equal marks.

- (2) Use of log tables and scientific calculator is allowed.
- (a) In case of general catalytic mechanism of the reaction of type $A B \stackrel{K}{=} C D$ discuss the kinetics of Arrhenius type intermediates (Pre-equilibrium treatment).
 - (b) Explain oscillating reactions and discuss the kinetics of Lotha Voltera model of Prey-Predator interactions.
 - (c) Explain photochemical mechanism of H₂ Br, reaction.

4

OR

- (p) What is relaxation time? How is it related with rate constants in the following reactions:

(i)
$$A = \frac{k_1}{k_2} B$$

(ii) $A - B = \frac{k_1}{k} B - C$.

- (q) What is autocatalysis? Discuss the mechanism and reaction kinetics of Belouzov-Zhabotonski reaction. 8
- (a) Use the Huckel secular determinant for butadiene. Calculate the energies of π -orbitals and 8 determine the delocalization energies.
 - (b) Write the Hamiltonian for H. (single electron system) and discuss the linear combination of atomic orbitals. 8

OR

1 (Contd.) VOX-38582

www.sgbauonline.com

	(p)	Using Hucket motecular orbital theory find out the delocalization energy for benzene.	8
	(4)	Construct the wave functions for sp' hybrid orbitals.	8
r.	(a)	Discuss the random cost transition in polypeptide and the structure of protein in light of the physical properties of macromolecules.	eir 8
	(ta)	Discuss the esmemetric method for determination of molecular weight of polymer.	3
		OR	
	(p)	What is oxidation-reduction polymerization? Discuss the kinetics of propagation and termination of chain.	on 3
	(q)	What are macromolecules? Calculate $\overline{\mathrm{M}_{x}}$ and $\overline{\mathrm{M}_{y}}$ if equal number of molecular weigh	nts
	_	of 100 and 10,000 are mixed together.	8
1	(a)	Describe the electrochemical mechanism of the nervous system.	8
	(b)	What are the different techniques for corrosion measurements? Also discuss weight lomethod in detail.	8
		OR	
	·pi	Derive the expression for Butler-Volmer equation. Discuss graphically the variation of curredensity with overpotential for activation polarization.	mi 8
	(q)	Write notes on:	
		(i) Electrocardiography	
		(ii) Concentration polarization.	8
5.	(a)	Discuss the Fermi-Dirac distribution for a gas when:	
		(i) E - E,	
		(ii) $E \ge E_c$	
		(iii) E < E	8
	(b)	Derive the expression for translational partition function.	8
		OR	
	(b)	Give the law of equipartition of energies and show that contribution due to all kinds of motion molecule contribute $1.2 K_3 T_2$.	on 8
	(4)	Show that grand canonical partition function is just an aggregate of canonical partition function	n. 8

VOX—38582 2 125