AU = 371

7

M.Sc. (Part—I) Semester—II (CBCS Scheme) Examination COMPUTER SCIENCE

(2MCS4(1) Discrete Mathematical Structures)

Time: Three Hours [Maximum Marks: 80

- Note:—(1) Illustrate your answers with the help of suitable examples/diagram wherever necessary.
 - (2) Assume suitable data wherever necessary.
- 1. (a) Determine whether the conclusion C follows logically from the premises H₁ and H₂:
 - (i) $H_i: P \to Q \quad H_i: P \quad C: Q$

(ii)
$$H_1: P \rightarrow Q \quad H_2: I(P \land Q) \quad C: IP$$
 7

- (b) Construct the truth table for:
 - (i) $(P \rightarrow Q) \land (Q \rightarrow P)$
 - (ii) $(P \land (P \rightarrow Q)) \rightarrow Q$.

OR

- 2. (a) Show that the following are equivalent formulas:
 - $\text{(i)} \quad P \,\vee\, (P \,\wedge\, Q) \iff P$
 - (ii) $P \vee (P \wedge Q) \Leftrightarrow P \vee Q$.
 - (b) Write formulas which are equivalent to the formulas given below and which contains the connectives ∧ and ¬ only:

$$\exists (P \rightleftharpoons (Q \to (R \lor P))).$$

- 3. (a) Explain intersection, union and symmetric difference operation on set with example. 6
 - (b) Show whether the following relations are transitive:

$$R_{1} = \{(1, 1)\}$$

$$R_{2} = \{(1, 2), (2, 2)\}$$

$$R_{3} = \{(1, 2), (2, 3), (1, 3), (2, 1)\}.$$
7

OR

VOX—38060 (Contd.)

www.sgbauonline.com

4.	(a)	Explain Equivalence Relation with example.	(
	(b)	Let $X = \{1, 2, 3\}$ and f, g, h and s be functions from X to X given by:	
		$f = \{(1, 2), (2, 3), (3, 1)\}$	
		$g = \{(1, 2), (2, 1), (3, 3)\}$	
		$h = \{(1, 1), (2, 2), (3, 1)\}$	
		$s = \{(1, 1), (2, 2), (3,3)\}$	
		find f·g; g·f; f·h·g; f·s.	
5.	(a)	Explain Associativity, Commutativity and Distributivity properties of the algebraic s	systems.
	X7		(
	(b)	Give the derivation for the string aabbee with the language:	
		$L(G) = \{a^nb^nc^{n-1} n \ge 1\},$	
		$G = \langle \{S, B, C\}, \{a, b, c\}, S, \phi \rangle$	
		$S \rightarrow aSBC, S \rightarrow aBC$	
		$CB \rightarrow BC$, $aB \rightarrow ab$	
		$bB \rightarrow bb$. $bC \rightarrow bc$	
		$aC \rightarrow cc$	7
		OR	
6.	(a)	Explain General Structure of a typical data communication system with noise.	7
	(b)	Define and explain with example:	
		(i) Semigroups	
		(ii) Monoids.	6
7.	(a)	Obtain the product-of-sum canonical forms of the Boolean expression	
		$- x_1 * x_2.$	7
	(b)	Explain Lattices as partially ordered sets.	6
		OR	
VOX38060		60 2	(Contd.)

www.sgbauonline.com

8.	(a)	What is Finite State Machine? Explain with model for Finite State Machine.	7
	(b)	Explain Sub-algebra, Direct Product and Homomorphism.	ϵ
9.	(a)	Show that whether the given graphs (a) and (b) are Isomorphic or not:	
		$Fig. (a) \qquad Fig. (b)$	7
	(b)	Explain:	
		(i) Length of Path	
		(ii) Simple Path	
		(iii) Cycle (Circuit).	7
		OR	
10.	(a)	What is Tree ? Explain. Also explain terminologies root, leaf, branch node.	7
	(b)	Explain Matrix Representation of graphs by giving example.	7
11.	(a)	What are Turing Machines ? Explain with example.	7
	(b)	Explain fault detection in combinational switching circuit.	6
		OR	
12.	(a)	What is Finite State Acceptor ? Explain.	7

(b) Explain the algorithm for generating a fault matrix.

www.sgbauonline.com