AU-323

M.Sc. (Part—I) Semester—II (CBCS Scheme) Examination

ELECTRONICS INSTRUMENTATION

Paper-VII

2-ELE3: Digital IC's and Design

2-ELES: Digital IC's and Design						
Time : Three Hours] [Maximum Mar			1arks : 80			
1.	(a)	Explain the following terms:				
		(i) Two variable map.				
		(ii) Three variable map.	4			
	(b)	Explain DeMorgan's theorem for three variable with logical diagram and tr	uth table.			
	(c)	What is SOP and POS standard logical function? Explain it with example.	6			
	OR					
	(p)	Explain Don't care condition with example.	5			
	(q)	Solve the following using Kmap:				
		$F(x, y, z) = \Sigma(2, 3, 4, 5).$	5			
	(r)	Design any six Boolean rules for AND & OR Operation.	6			
2.	(a)	Explain 1:8 Demultiplexer using AND logic gate with truth table.	6			
	(b)	What is code converter?	4			
	(c)	Explain 4:16 Decoder.	6			
OR						
	(p)	Explain parity generator and parity checker.	6			
	(q)	What is encoder? Give its application.	4			
	(r)	Explain BCD to 7 Segment decoder.	6			
VOX – 36795		(Contd.)				

www.sgbauonline.com

3.	(a)	Explain ROM array in brief.	8
	(b)	What is PLA? Explain it in brief.	8
		OR	
	(p)	Explain PAL with truth table.	8
	(q)	Explain 4 bit adder subtracter with examples.	8
4.	(a)	Explain MSJK flip-flop with truth table.	7
	(b)	Explain Race around condition in JKFF.	. 3
	(c)	Design mod-16 counter with JKMSFF and give its truth table & waveform.	6
		OR	
	(p)	Explain the general model of sequential machines.	6
	(q)	What is D-Latch?	2
	(r)	Explain 3-bit asynchronous up-down counter with truth table & waveform.	8
5.	(a)	Design 5-bit shift register using RSFF with its waveform.	8
	(b)	Explain the concept of Ring-counter.	8
		OR	
	(p)	Explain derivation and reduction of primitive flow table.	8
	(q)	Explain asynchronous sequential network design.	8