- 3. (c) Prove that the multiplicative group of nonzero elements of a finite field is cyclic.
 - (d) If E is a finite separable extension of a field F, then prove that E is a simple extension of F. 8

UNIT-V

- 9. (a) Find the Galois groups G(K/Q) of the following extensions K of Q:
 - (i) $K = Q(\sqrt{3}, \sqrt{5})$
 - (ii) $K = Q(\alpha)$, where $\alpha = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$
 - (iii) K is the splitting field of $x^4 3x^2 + 4 \in \mathbb{Q}[x]$. 2+3+3=8
 - (b) Prove that f(x) ∈ F[x] is solvable by radicals over F iff its splitting field E over F has solvable Galois group G(E/F).
- 10. (c) Let E be the splitting field of $x^n a \in F[x]$. Then prove that G(E/F) is solvable group.
 - (d) Define Cyclotomic polynomial. Prove that the cyclotomic polynomials $\phi_n(x)$ are irreducible over Z. 2+6=8

AQ-883

M.Sc. (Part-I) Semester-II (CBCS Scheme) Examination

MATHEMATICS (New) 202

(Advanced Linear Algebra and Field Theory)

Time—Three Hours]

[Maximum Marks—80

Note: - Solve any ONE question from each unit.

UNIT-I

- 1. (a) Prove that:
 - (i) The characteristic roots of a Hermitian matrix are real.
 - (ii) The characteristic roots of a unitary matrix are of unit modulus.
 - (b) Determine the eigen values and the corresponding eigen vectors of the matrix:

$$\mathbf{A} = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

8

2. (c) Prove that the eigen vectors corresponding to distinct eigen values of a matrix are linearly independent.

8

8

(Contd.)

(d) Let A be a 7×7 matrix with minimal polynomial $M(x) = (x^2 - 2x + 5) (x - 3)^3$. Find all possible rational canonical forms of A.

UNIT-II

3. (a) Find canonical form of the matrix:

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & -3 \end{bmatrix}$$

Also find rank and signature of A.

- (b) Prove that the ranges of values of two congruent quadratic forms are the same.
- 4. (c) Prove that two real quadratic forms in n variables are real equivalent iff they have the same rank and index (or signature).
 - (d) Reduce the following quadratic form to canonical form and find its rank and signature

2

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 3 & -2 & 3 \end{bmatrix}$$

UNIT-III

- 5. (a) Let $F \subseteq E \subseteq K$ be fields. If $[K : E] < \infty$ and $[E : F] < \infty$ then prove that :
 - (i) $[K:F] < \infty$

(ii) [K : F] = [K : E][E : F]. 8

- (b) Show that:
 - (i) $x^3 x 1 \in Q[x]$
 - (ii) $x^4 + 8 \in Q[x]$

are irreducible over Q.

4+4=8

- 6. (c) Let P(x) be an irreducible polynomial in F[x]. Then prove that there exists an extension E of F in which p(x) has a root.
 - (d) Let F be a field. Then prove that there exists an algebraically closed field K containing F as a sub field.

UNIT-IV

(a) Prove that any finite field F with pⁿ elements is the splitting field of x^{pⁿ} - x ∈ F_p[x]. Consequently, any two finite fields with pⁿ elements are isomorphic.

8

(b) If the multiplicative group F' of nonzero elements of a field F is cyclic, then prove that F is finite. 8