M.Sc. Part-I (Semester-II) (CBCS Scheme) Examination (Old)

MATHEMATICS (201)

(Measure and Integration Theory)

Time—Three Hours]

[Maximum Marks---80

Note: Solve ONE question from each Unit.

UNIT-I

- 1. (a) Show that for any set A, $m^*(A) = m^*(A+x)$, where $A + x = \{y + x : y \in A\}$.
 - (b) Let {E_i} be a sequence of measurable sets. Then show that:
 - (i) If $E_1 \subset E_2 \subset E_3$, we have $m (\lim E_i) = \lim m (E_i)$
 - (ii) If $E_1 \supset E_2 \supset E_3$..., and $m(E_i) < \infty$ for each i, then we have $m(\lim E_i) = \lim m(E_i)$.
- 2. (c) Show that for any sequence of sets $\{E_i\}$,

$$m^* \left(\bigcup_{i=1}^{\infty} E_i \right) \leq \sum_{i=1}^{\infty} m^* (E_i)$$

- (d) Let {fn} be a sequence of measurable functions defined on the same measurable set. Then show that:
 - Sup fn is measurable (i)
 - inf fn is measurable
 - lim sup fn is measurable
 - lim inf fn is measurable.

UNIT-II

- Define integral of (i) a simple measurable function 3. (ii) a nonnegative measurable function f. Show that both the definitions coincide for any simple measurable function.
 - Show that if f is an integrable function, then $|f| dx \le |f| dx$. State and prove the condition under which equality in the above inequality occurs.
- Let f and g be non-negative measurable function. Then show that:
 - $f \le g \Rightarrow \int f dx \le \int g dx$
 - If $f \le g$ on a measurable set A, then

$$\int_{\Lambda} f \, dx \le \int_{\Lambda} g \, dx$$

- (iii) For $a \ge 0$, $\int a f dx = a \int f dx$
- (iv) For measurable sets A and B, if $A \supset B$ then $\int f dx \ge \int f dx.$

UNIT-V

- Show that if f, $g \in L^p(\mu)$ and a, b are constants then af + bg $\in L^p(\mu)$. Further show that if $\mu(x) < \infty$, and $0 , then <math>L^{q}(\mu) \subset L^{p}(\mu)$.
 - (b) Let $p \ge 1$ and let f, $g \in L^p(\mu)$. Show that :

$$\left(\int_{|f|} f + g^{-p} d\mu\right)^{1/p} \le \left(\int_{|f|} f^{-p} d\mu\right)^{1/p} + \left(\int_{|g|} g^{-p} d\mu\right)^{1/p}.$$

10. (c) Let ψ be convex on (a, b) and $a \le s \le t \le u \le b$. Show that ψ (s, t) $\leq \psi$ (s, u) $\leq \psi$ (t, u), where

$$\psi(s, t) = \frac{\psi(t) - \psi(s)}{t - s}, s \neq t.$$

Define $fn \rightarrow f$ in measure. Show that if a sequence of measurable functions converges in measure, then the limit function is unique a.e.

5

8

www.sgbauonline.com

(d) Let $\{fn\}$ be a sequence of integrable function such that $\sum_{n=1}^{\infty} \int |fn| dx < \infty$. Then show that $\sum_{n=1}^{\infty} fn(x)$ converges a.e., its sum f(x) is integrable and

$$\int f dx = \sum_{n=1}^{\infty} \int f n dx.$$
 8

UNIT—III

5. (a) Define four derivates of a function f. Find four derivates of the continuous function f at x = 0

$$f(x) = \begin{cases} ax \sin^2 \frac{1}{x} + bx \cos^2 \frac{1}{x} &, x > 0 \\ 0 &, x = 0 \\ a^1 x \sin^2 \frac{1}{x} + b^1 x \cos^2 \frac{1}{x} &, x < 0 \end{cases}$$

where $a \le b$, $a^1 \le b^1$.

(b) If $f \in L(a, b)$, then show that:

(i)
$$F(x) = \int_{a}^{x} f(t) dt$$
 is continuous on [a, b]

(ii)
$$F \in B \vee [a, b]$$
.

6. (c) Let
$$f \in B \vee [a, b]$$
, then show that $f(b) - f(a) = P - N$, and $T = P + N$, all variations being on $[a, b]$, a, b finite.

8

8

www.sgbauonline.com

(d) If f is finite valued monotone increasing function defined on finite interval [a, b], then show that f' is measurable

and
$$\int_a^b f' dx \le f(b) - f(a)$$
. 8

UNIT-IV

- 7. (a) Define:
 - (i) Ring of sets
 - (ii) σ-ring of sets
 - (iii) σ-algebra of sets.

Show that every σ -algebra is a σ -ring but not conversely.

- (b) Let μ* be the outer measure on H(R) defined by μ on R. Show that δ* contains δ(R), the σ-ring generated by R.
- 8. (c) If μ is a measure on a ring R, then show that for A, B \in R, A \subset B we have $\mu(A) \leq \mu(B)$.
 - (d) Let μ* be an outer measure on H(R) and let δ* denote the class of μ*-measurable sets. Show that δ* is a σ-ring and μ* restricted, to δ* is a complete measure.