M.Sc. Part—I (Semester—II) (CBCS Scheme) Examination (New)

MATHEMATICS (201)

(Measure and Integration Theory)

Time—Three Hours]

[Maximum Marks—80

Note: - Solve ONE question from each Unit.

UNIT-I

- (a) Show that (i) β ⊂ m (ii) β is the σ-algebra generated by each of the following classes, the open intervals, the open sets. Where β is σ-algebra generated by class of intervals of the form [a, b) and m is class of all measurable sets.
 - (b) Show that the following are equivalent:
 - (i) f is a measurable function
 - (ii) $\{x; f(x) \ge a\}$ is measurable for every real a
 - (iii) $\{x; f(x) < a\}$ is measurable for every real a
 - (iv) $\{x; f(x) \le a\}$ is measurable for every real a.

Further show that if one of the above is satisfied then $\{x : f(x) = \alpha\}$ is measurable for every extended real number α .

(Contd.)

8

(Contd.)

- (c) Show that the class m of measurable sets is σ-algebra.
 - (d) If $\{f_n\}$ is a sequence of measurable functions defined on the same measurable set E. Then show that:
 - (i) $\sup f_n$ is measurable
 - (ii) inf f is measurable
 - (iii) lim sup f_n is measurable
 - (iv) $\lim \inf f_n$ is measurable.

UNIT-II

- 3. (a) Show that if f is a non-negative measurable function, then f = 0 a.e if and only if $\int f dx = 0$.
 - (b) Let f and g be non-negative measurable function. Then show that $\int f dx + \int g dx = \int (f + g) dx$. 8
- 4. (c) Let $\{f_n\}$ be a sequence of measurable function such that $|f_n| \le g$, g is integrable and $\lim_{n \to \infty} f_n$ a.e. Then show that f is integrable and $\lim_{n \to \infty} \int f_n dx = \int f_n dx$.
 - (d) Show that $\lim_{n \to \infty} \frac{dx}{\left(1 + \frac{x}{n}\right)^n} = 1$.

- 10. (c) Let $1 \le p \le \infty$, $1 \le q \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$ and let $f \in L^p(\mu)$, $g \in L^q(\mu)$. Show that $fg \in L'(\mu)$ and $\iint fg \, |d\mu \le \left(\iint f \, |^p \, d\mu \, \right)^{1/p} \left(\iint g \, |^q \, d\mu \, \right)^{1/q}.$
 - (d) Define $f_n \to f$ almost uniformly and $f_n \to f$ in measure. Show that if $f_n \to f$ a.u. then $f_n \to f$ in measure.

200

UNIT-III

5. (a) Define four derivatives of a function f and find four derivatives of

$$f(x) = \begin{cases} ax \sin^2 \frac{1}{x} + bx \cos^2 \frac{1}{x} & x > 0 \\ 0 & x = 0, \\ a'x \sin^2 \frac{1}{x} + b'x \cos^2 \frac{1}{x} & x < 0 \end{cases}$$

where a < b, a' < b'.

(b) If
$$f \in L(a, b)$$
 and $\int_{a}^{x} f dt = 0$ for all $x \in (a, b)$, then prove that $f = 0$ a.e in (a, b) .

 $T_{c}[a, b] = T_{c}[a, c] + T_{c}[c, b].$

6. (c) If a < c < b, then show that:

on [a, b]. (ii) $F \in B \vee [a, b]$.

UNIT—IV

7. (a) If μ is a measure on R, then show that :

(i)
$$A, B \in \mathbb{R}, \Lambda \subset \mathbb{B} \Rightarrow \mu(A) \leq \mu(B)$$

(ii) A, B, C
$$\in$$
 R, A, B \subset C, $\mu(A) = \mu(C) < \infty$

$$\Rightarrow \mu(A \cap B) = \mu(B).$$

8

8

8

www.sgbauonline.com

(b) Let μ* be the outermeasure on H(R) defined by μ on R. Show that S* contains S(R), the σ-ring generated by R.

- 8. (c) Define:
 - (i) ring of sets
 - (ii) σ-ring of sets
 - (iii) σ-algebra of sets.

Show that every σ -algebra is a σ -ring but not conversely.

(d) If μ is a measure on a ring R and if μ^* is defined on $\mathcal{H}(R)$ by

then show that:

- (i) for $E \in R$, $\mu^*(E) = \mu(E)$
- (ii) μ^* is an outermeasure on $\mathcal{H}(R)$. 8

UNIT-V

9. (a) Let ψ be convex on (a, b) and a < s < t < u < b. Show that $\psi(s, t) \le \psi(s, u) \le \psi(t, u)$ where

$$\psi(s, t) = \frac{\psi(t) - \psi(s)}{t - s} t \neq s.$$

(b) Show that $\int_{0}^{\pi} x^{-1/4} \sin x \, dx \le \pi^{3/4}$.

UBS- -49957(Re)

4

(Contd.)