(b) If P' and Q' are any two vectors in an elementary
 2-space V<sub>2</sub>, then show that :

$$k = \frac{R_{rsmn} P^r Q^s P^m Q^n}{(g_{rm} g_{sn} - g_{rm} g_{sm}) P^r Q^s P^m Q^n},$$

where k is a Riemannian curvature.

8

10. (c) Define isotropic point and show that at an isotropic point the Riemannian curvature satisfies

$$R_{ramp} = k (g_{rm} g_{sn} - g_{rm} g_{sm}).$$
 2+6

(d) Define Einstein space. Show that every Riemannian space V<sub>2</sub> is an Einstein space. 2+6

# M.Sc. Part—I (Semester-II) (CBCS Scheme) Examination (Old) MATHEMATICS

(Riemannian Geometry)

Paper--205 (Optional)

Time-Three Houss

Maximum Marks-80

N.B.: — Attempt ONE question from each Unit.

UNIT—I

- 1. (a) Compute  $\Gamma_{22}^1$ ,  $\Gamma_{12}^2$ ,  $\Gamma_{23}^3$ ,  $\Gamma_{44}^4$  for metric  $ds^2 = -e^A dr^2 r^2 d\theta^2 r^2 \sin^2\theta d\phi^2 + e^B dt^2,$  where A and B are functions of r alone.
  - (b) Show that the absolute derivative  $\frac{\delta T^r}{\delta u}$  is contravariant vector.
- 2. (c) Show that the vectors  $A^m = (1, 1, 1)$  and  $B^m = (2, -1, -1)$  are orthogonal in space  $ds^2 = dx^2 + dy^2 + dt^2$ , but not in  $ds^2 = dx^2 + dy^2 dt^2$ .

(d) Define:

- (i) Christoffel symbols of first kind
- (ii) Christoffel symbols of second kind
- (iii) Riemannian Metric.

And prove transformation law for Christoffel symbols as

$$[mn, r]' = [ab, c] \frac{\partial x^a}{\partial x'^m} \frac{\partial x^b}{\partial x'^n} \frac{\partial x^c}{\partial x'^r} + g_{ab} \frac{\partial x^a}{\partial x'^r} \frac{\partial^2 x^b}{\partial x'^m} \frac{\partial^2 x^b}{\partial x'^m}.$$

$$2+2+2+4$$

# UNIT-II

- (a) Define geodesics and prove that geodesics are autoparallel curves.
  - (b) Show that any field of parallel vectors is of constant magnitude.
- (c) If two vectors, of constant magnitude, undergo parallel displacements along a given curve, then show that they are inclined at a constant angle.
  - (d) Describe Riemannian coordinates. Show that necessary and sufficient condition that the system  $x'^i$  be Riemannian coordinates is that the equations  $\Gamma'^i_{mn} x'^m x'^n = 0$  hold throughout the space  $V_N$ .

2+6

UBS-49955 2 (Contd.)

# UNIT-III

5. (a) For the metric in polar coordinates

$$ds^2 = dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2),$$

calculate the non-zero components of curvature tensor  $R_{\mbox{\tiny nems}}. \ensuremath{8}$ 

- (b) Show that:
  - (i)  $R_{prmn} = R_{mager}$
  - (ii)  $R_{pronu} + R_{punor} + R_{punor} = 0$ . 4+4
- 6. (c) Obtain expression for covariant curvature tensor.

(d) Prove that the number of independent components of curvature tensor  $R_{\text{neum}}$  in N-dimensional space is

$$\frac{N^2(N^2-1)}{12}.$$
 8

### UNIT-IV

(a) Show that divergence of Einstein tensor vanishes.

(b) State and prove Bianchi identity.

8. (c) Define Ricci tensor and Einstein tensor. Also show that each of which is symmetric tensor.

2+2+2+2

8

8

(d) Find the equation of Geodesic deviation.

### UNIT---V

 (a) Define Riemann curvature and show that it is independent of the pair of orthogonal unit vectors in elementary 2-space V<sub>2</sub>.

UBS-49955

3

(Contd.)