8

M.Sc. Part—I Semester-II (C.B.C.S. Scheme) Examination MATHEMATICS

(Riemannian Geometry)

Paper-205

Time: Three Hours

[Maximum Marks: 80

Note:— Solve FIVE questions, selecting ONE from each unit.

UNIT-I

1. (a) Compute the quantities g^{mn} for a V_3 -space whose fundamental form in coordinates u, v, w is :

$$adu^2 + bdv^2 + cdw^2 + 2fdvdwt + 2kdwdn + 2hdudv$$
.

(b) Show that under the change of the coordinate system the Christoffel symbols transform as :

$$[mn, r]' = [ab, c] \frac{\partial x^a}{\partial x'^m} \frac{\partial x^b}{\partial x'^n} \frac{\partial x^c}{\partial x'^r} + g_{ab} \frac{\partial x^a}{\partial x'^r} \frac{\partial^2 x^b}{\partial x'^m} \frac{\partial^2 x^b}{\partial x'^m}.$$

- 2. (c) Define absolute derivative. Also show that $\frac{\delta T^r}{\delta u}$ is a contravarient vector.
 - (d) Show that in:

$$\Lambda_{;n}^{mn} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^n} \left(A^{mn} \sqrt{g} \right) + A^{nr} \left[\overline{nr}^m \right]$$

the last term vanishing if An is Skew-Symmetric. Also show that :

$$A_{m;n}^{n} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{n}} (A_{m}^{n} \sqrt{g}) - A_{r}^{n} \Big|_{mn}^{r}.$$

UNIT-II

3. (a) Show that a vector T of variable magnitude undergoes a parallel displacement along a curve C if the absolute derivative T along C has the same direction of T at each point of C:

i.e.
$$T_{;k}^{i} \frac{dx^{k}}{d^{s}} = T^{i}g(s)$$
.

- (b) Define Geodesics and obtain its differential equation.
- (c) Necessary and sufficient conditions that a system of coordinates be geodesic with pole at O are that their second covariant derivatives with respect to the metric of the space V_N all vanish at that point. Prove this.

WPZ—3425 (Contd.)

(d) Show that at the origin of a Riemannian coordinate system yⁱ:

$$\frac{\partial}{\partial v^{m}} \Big|_{ki}^{-i} = \frac{\partial}{\partial y^{k}} \Big|_{mi}^{-i} , \forall k, m.$$

UNIT--III

5. (a) Obtain a formula for covariant tensor from R_{rmn}^p as :

$$R_{pmm} = g_{ps} R^{s}_{,mm} = \frac{1}{2} \left(g_{pn,rm} + g_{rn,pn} - g_{pm,rn} - g_{rn,pm} \right) + g^{sq} ([p\,n,s][r\,m,q] - [p\,m,s][r\,n,q]$$

8

8

(b) For the metric in spherical polar coordinates:

$$ds^2 = dr^2 + r^2(d\theta^2 + \sin^2(d\phi^2))$$

calculate the non-zero components R_{prenn}.

- 6. (c) Show that :
 - (i) $R_{.rmn}^p + R_{.mnr}^p + R_{.nrm}^p = 0$

(ii)
$$R_{prinn} + R_{pmrr} + R_{pmrr} = 0$$

(d) List the independent components of Riemann tensor R_{ipinn} for the Riemannian space V_{si} , N = 2, 3, 4.

UNIT---IV

- 7. (a) Define Ricci tensor and minstein tensor and show that they are symmetric tensor. 2-2+2+2
 - (b) Let T'(u, v) be a vector field over a two space V_0 with equation $x^r = x^r(u, v)$ immersed in a Riemannian space V_N . Then prove that :

$$\frac{\delta^2 T^r}{\delta u \delta v} - \frac{\delta^2 T^r}{\delta v \delta u} = R \frac{\partial x^m}{\partial u} \frac{\partial x^m}{\partial v} \frac{\partial x^m}{\partial v}.$$

- (c) On a surface of a sphere of radius a, find the curvature tensor, the Ricci tensor and the curvature invariant (in polar coordinates).
 - (d) State and prove Bianchi Identity.

UNIT---V

- 9. (a) The Riemann curvature is independent of the pair of orthogonal unit vectors in V₂.Prove this.
 - (b) Show that every Riemannian space V₂ is an Einstein space. 8
- 10. (c) Prove that, if $R_i^a = g^{am} R_{im}$, then $R_{ia}^a = \frac{1}{2} \frac{\partial R}{\partial x^i}$.
 - (d) Prove that if a Riemann an space V_n is isotropic at each point of a region, then the Riemannian curvature is constant throughout the region.