8

M.A./M.Sc. (Semester—II) (CBCS Scheme) Examination (Old)

MATHEMATICS-204

(Topology-II)

Time-Three Hours]

UBS 49954

Maximum Marks-80

Note: --- Attempt ONE question from each Unit.

UNIT-I

1. (a) Define metric topology. Let X be any non-empty set and the mapping $d^* : X \times X \to R$ is defined by

$$\mathbf{d}^*(\mathbf{x},\mathbf{y}) = \begin{cases} 0, & \mathbf{x} = \mathbf{y} \\ 1, & \mathbf{x} \neq \mathbf{y} \end{cases}$$

Then show that d* is a metric for X.

- Show that each ball is an open set for the relative topology.
- 2. (c) Show that every Lindelöf metric space is a second axiom.
 - (d) Show that the space (C, d_C) of all real-valued continuous functions is separable.

UNIT-II

- 3. (a) Prove that the space C of continuous functions is complete. 8
 - (b) Define the following:
 - (i) Complete enclosure
 - (ii) Embedded metric space
 - (iii) Absolutely closed metric space
 - (iv) Nested sequence.

8

- (c) Prove that metric space is complete if and only if every infinite totally bounded subset has a limit point.
 - (d) Show that a metric space is complete if and only if it is absolutely closed.

UNIT-III

5. (a) If (X, d_x) and (Y, d_y) are metric spaces then show that the function

$$d(, < x_2, y_2>) = \sqrt{d_x^2(x_1, x_2) + d_y^2(y_1, y_2)}$$

is a metric for $X \times Y$ which induces the product topology.

- (b) If H is a Hilbert space then show that H × H is isometric to H.
- 6. (c) Define metric products and perfect set. Show that a product metric space D is perfect. 8
 - (d) Prove that $\Pi_{\lambda}X_{\lambda}$ is Hausdorff space if and only if each space X, is Hausdorff. 8

UNIT--IV

- 7. (a) Define:
 - (i) Point-open topology
 - (ii) Evaluation mapping
 - (iii) Induced topology
 - (iv) Compact-open topology.

8

- (b) If Y is regular then show that the set of all continuous mappings of X into Y, I(X, Y) with the compact open topology is regular.
- (c) Prove that a subset G of Y is open in the quotient topology relative to F: X → Y if and only if f^{-1/G}; is an open subset of X.
 - (d) Show that the quotient topology with Y is a T₁-space if and only if f⁻¹(y) is closed in X for every y ∈ Y.

UNIT-V

- 9. (a) State and prove Stone's theorem.
 - (b) Show that every Paracompact regular space is normal.

10. (c) Define generalized Hilbert space and prove that in T₃-space with a \u03c3-locally finite base, every open set is an F₂ set.

(d) State and prove Nagata-Smirnov metrization theorem.

ð