(b) Show that paracompactness is a topological property.

6

- 10. (c) State and prove Nagata Metrization theorem. 12
 - (d) Show that in a T₃-space with a 6-locally finite base, every open set is an F₄ set.

M.Sc. (Semester - II) (CBCS Scheme) Examination MATHEMATICS (New)

Topology-II

Time—Three Hours]

[Maximum Marks—80

N.B.: — Attempt one question from each unit.

UNIT-I

- (a) Define induced topology. Show that the family of all balls of points in a set X with metric d forms a base for a topology for X.
 - (b) Define Lindelöf space and show that Lindelöf metric space is second axiom. 8
- 2. (c) Show that, every separable metric space is homeomorphic to some subset of Frechet space.

8

 (d) Define completely normal space and show that every metric space is completely normal.

200

UNIT-II

- Prove that metric space is complete if and only if 3. it is absolutely closed.
 - Show that, every closed subset of a complete metric space is complete.
- Show that the metric space is complete iff the intersection of every nested sequence of nonempty closed balls with radii tending to zero is nonempty. 8
 - Define Cauchy sequence and show that the space of Frechet space is complete.

UNIT-III

- (a) Prove that Π , X, is Hausdorff if and only if each 8 X, is Hausdorff.
 - (b) Define filter and ultrafilter. Show that every filter is contained in an ultrafilter.
- Show that if (X,dx) and (Y,dy) are metric spaces, then the function d defined by setting

 $d((x_1, y_1), (x_2, y_2)) = \sqrt{dX^2(x_1, x_2) + dY^2(y_1, y_2)}$ metric for X × Y which induces the product topology.

8

(Contd.)

(d) Prove that $X \times Y$ is dense-in-itself iff at least one of the spaces X and Y is dense-in-itself.

UNIT-IV

- (a) If $\langle fn \rangle$ is a sequence of points in F (X,Y) with the topology of pointwise convergence, then show that $\lim_{x \to 0} f = f \text{ iff } \lim_{x \to 0} f(x) = f(x) \text{ for every } x \in X.$
 - (b) If Y is regular, then $\tau(X,Y)$, with the compact-open 8 topology, is regular. Prove this.
- Prove that if X is compact, connected, locally 8. connected, separable, then so is Y with the quotient topology.
 - Show that Y, with the quotient topology is T,-space iff $F^{-1}(Y)$ is closed in X for every $y \in Y$.

UNIT-V

- (a) Prove that in a regular space X, the following conditions are equivalent to paracompactness:
 - For every open covering of X, there is a 6-locally finite open cover which refines it.
 - For every open covering of X, there is a 6-discrete open covering which refines it.
 - (iii) For every open covering of X, there is an open cover which star refines it. 10

3