8

(Contd.)

M.Sc. Semester-II (CBCS Scheme) Examination

MATHEMATICS

(Topology-II)

Paper-204 Time: Three Hours [Maximum Marks: 80 N.B.: - Attempt one question from each unit. UNIT-I 1. Prove that the family of all balls of points in a set X with metric d forms a base for a topology for X. 8 (b) Prove that every separable metric space is second axiom. 8 (c) Define Hilbert space (II, d₁₁). Prove that Hilbert space is not locally compact. 2+6 (d) Define Hilbert cube and show that co-ordinatewise and pointwise convergence are equivalent in Hilbert cube. 2 + 6UNIT-II (a) Prove that Hilbert space is complete. 8 (b) Prove that every metric space is isometric to a dense subset of a complete metric space. 8 (c) Prove that a metric space is complete iff it is absolutely closed. (d) Prove that in a complete metric space the intersection of a countable number of dense, open sets is itself dense. UNIT-III 5. (a) Prove that H×H is an isometric to H. 8 8 (b) Prove that X×Y is compact iff X and Y are compact. (c) For each $x, y \in K$, let $x = \sum_{i=1}^{\infty} x_i \mid 3^i$ and $y = \sum_{i=1}^{\infty} y_i \mid 3^i$, show that $x = y \iff x_i = y_i$ for all i. 8

(d) If D is subset of Frechet space and K is canter discontinuum then prove that D is homeomorphic

www.sgbauonline.com

VOX-36790

to K.

www.sgbauonline.com

UNIT-IV

7.	(a)	Define:		
		(i) Point-open topology.	4	
		(ii) Compact-open topology.	2	
		(iii) Evaluations.	2	
		(iv) Pseudometric space.	2	
	(b)	Prove that Y with the quotient topology is T_1 -space iff $f^{-1}(y)$ is closed in X for every y	y∈Y 8	
8.	(c)	Prove that if a subset G of Y is open in quotient topology iff f-1(G) is an open subset of X		
	(d)	Show that if (X, d) is a pseudometric space then the relation τ defined by setting $\langle x, y \rangle$ iff $d(x, y)=0$, is an equivalence relation and the quotient space X/τ is metrizable.	> ∈′ 8	
		UNIT-V		
9.	(a)	State and prove Urysohn's Lemma.	8	
	(b)	Define Paracompact. Prove that every paracompact regular space is normal.	2+6	
10.	(c)	Prove that for every open covering of regular topological space X, there is a locally finit open cover which refines it iff there is locally finite cover which refines it.		
	(d)	(i) Define Generalized Hilbert space (H ⁻ , dH ⁻).		
		(ii) Write statement of Bing metrization theorem.	-4	
	(e)	Prove that a T,—space with σ-locally finite base is normal.	4	

125