M.Sc. (Semester—II) (CBCS Scheme) Examination 204: MATHEMATICS (Topology—II)

Time: Three Hours1 [Maximum Marks: 80

N.B.:— Attempt **ONE** question from each unit.

UNIT-I

- (a) Define Frechet Space (F, d_F) . Show that if, in F, let $X_k = \langle x_1^k, x_2^k, ... \rangle$ and 1. $X = \langle x_i, x_2, \rangle$, then $\lim_k X_k = X$ iff $\lim_k x_i^k = x_i \ \forall \ i \in N$. 2+6
 - (b) Define metric space. Show that every metric space is a Hausdorff space. 2+6
- (c) Show that the space of continuous functions on I = [0, 1] is separable. 2. 8
 - (d) Define ε-net for a subset E of a metric space. Show that every countably compact metric space is separable. 2 ± 6

UNIT-II

- (a) Define Cauchy sequence and show that Hilbert space is complete. 3. 2+6
 - (b) Show that all completions of a metric space are isometric.

8

- 4. (c) Define:
 - Absolutely closed metric space
 - (ii) Contraction map on a metric space
 - (iii) First category set
 - (iv) Completion of a metric space.

2+2+2+2

(d) Show that, a metric space is complete iff every infinite totally bounded subset has a limit point.

UNIT-III

(a) Show that $\prod X_{\lambda}$ is Hausdorff if each X_{λ} is Hausdorff. 5.

8

8

(b) Show that $X \times Y$ is compact iff X and Y are compact.

- 2+2+4
- (c) Define filter and ultrafilter. Prove that every filter is contained in an ultrafilter. 6.
 - (d) Prove that $\prod_{\lambda} X_{\lambda}$ is connected iff each space X_{λ} is connected.

8

UNIT-IV

- (a) If $\langle f_n \rangle$ is a sequence of points in $\mathfrak{F}(X, Y)$ with the topology of pointwise convergence, then show that $\lim_{n \to \infty} f = f = \inf_{n \to \infty} \lim_{n \to \infty} f(x) = f(x)$ for every x in X.
 - (b) If Y is a T_0 space, then show that $\mathfrak{F}(X,Y)$ is a T_0 space with the compact open topology.

- 8. (c) Show that, a subset G of Y is open in the quotient topology (relative to f: X → Y) iff f⁻¹(G) is an open subset of X.
 8 (d) Show that Y, with the quotient topology, is a T₁ space iff f⁻¹(y) is closed in X for every y in Y.
 9. (a) State:

 (i) Nagata-Smirnov Metrization Theorem
 (ii) Urysohn's Lemma
 (iii) Urysohn's Metrization Theorem
 (iv) Bing Metrization Theorem.

 8 (b) Define σ-locally finite family. Show that in a T₁-space with a σ-locally finite base, every open
- set is an \mathbb{F}_{σ} -set. 2+6

 10. (c) Show that paracompactness is a topological property. 8
 - (d) Show that every paracompact regular space is normal.