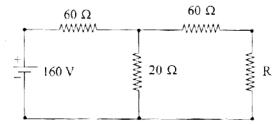
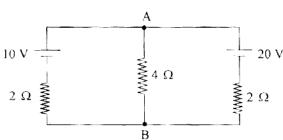
M.Sc. (Semester—II) (CBCS Scheme) Examination 2-PHY-4(I): PHYSICS


(Network Theorems and Solid State Devices)

Time: Three Hours] [Maximum Marks: 80

N.B.:— All questions are compulsory and carry equal marks.


EITHER

- 1. (A) What are passive components? Explain the functions of Capacitor and Inductor in an electric circuit.
 - (B) State and explain Kirchhoff's Voltage and Current law with sign conventions.
 - (C) Find the value of 'R' in the circuit given below for transferring maximum power in it. What is the amount of this power?

OR

- (P) Discuss the various steps involved for solving network by using Norton's theorem. 5
- (Q) State and prove Maximum power transfer theorem.
- (R) Find the current through ' 4Ω ' resistor in the circuit below, using superposition theorem :

EITHER

- 2. (A) Explain the working of p-n junction diode under forward and reverse bias. 4
 - (B) Explain the principle and construction of n-channel enhancement MOSFET. 4
 - (C) Explain the use of UJT as time-base generator.
 - (D) Explain the terms Depletion region and Potential Barrier.

OR

- (P) Discuss an avalanche breakdown and zener breakdown.
- (Q) Distinguish between BJT and JFET.
- (R) Give the construction and uses of LED.
- (S) A battery of 10 V is connected between bases of Silicon UJT. Intrinsic stand off ratio of UJT is 0.4. Find the value of peak point voltage.

TPZ—July

(Contd.)

4

6

EITHER

		•••	
3.	(A)	Explain construction, working and characteristics of SCR.)
	(B)	Explain with neat circuit diagram, the working of bridge rectifier. Obtain an expression fo its ripple factor.	
	OR		
	(P)	Explain in brief construction, working and characteristics of TRIAC.	}
	(Q)	Explain with circuit diagram, the working of full wave rectifier using two diodes. Show that the maximum rectification efficiency of FWR is 81.2%.	it 3
	EIT	HER	
4.	(Λ)	Describe Class A, Class B and Class C operation of transistor amplifier, using loadline an operating point.	d 5
	(B)	What are different types of Noise? Explain thermal noise and shot noise.	5
	(C)	A voltage gain of the amplifier is reduced from 60 to 15 due to negative feedback. What is feedback factor?	ıt 4
	OR		
	(P)	What are positive and negative feedback in amplifier? Obtain an expression for transfer gai with feedback.	n 6
	(Q)	Explain the input and output characteristic of BJT.	6
	(R)	Explain the concept of Current Feedback and Voltage Feedback.	4
	EIT	THER	
5.	(A)	Explain active transducer and passive transducer. Describe construction and working condenser microphone.	of 8
	(B)	Explain the principle, construction and working of LVDT with suitable diagram.	8
	OR		
	(P)	Explain with suitable block diagram, the construction and working of function generator.	8
	(Q)	Draw block diagram of general purpose CRO. Explain the use of time base signal in CRO State advantages of CRO.). 8