4

M.Sc. Semester-II (CBCS Scheme) Examination PHYSICS

2-PHY-2 Quantum Mechanics-II

Time: Three Hours] [Maximum Marks: 80

N.B.:—All questions are compulsory and carry equal marks.

EITHER

- 1. (a) Discuss and compute the Stark effect for the ground state of hydrogen atom.
 - (b) For a non-degenerate case, mentioning the first order correction to energy and wave function, derive the second order correction to wave function and energy using time independent perturbation theory.

OR

- (p) Show that in the usual stationary state perturbation theory, if the Hamiltonian can be written
 - $H = H_0 + H^1$ with $H_0 \phi_0 = E \phi_0$ then correction is $\Delta E_0 \approx \langle \phi_0 | H^1 | \phi_0 \rangle$
- (q) Explain first order and second order Zeeman effect using perturbation theory.

EITHER

- (a) Obtain the expression for transition probability per unit time in the first order when constant perturbation acts on the system for short interval.
 - (b) Derive and explain Fermi Golden Rule for the transition rate from a given initial state to a final state of continuum.
 8

OR

- (p) Explain briefly in context with the time dependent perturbation theory induced emission and absorption of electromagnetic radiation in atomic system.
- (q) Explain the application of selection rules for explaining atomic spectra by suitable examples.

EITHER

- 3. (a) Explain the significance of the phase shift in the scattering cross-section of a spherically symmetric potential.
 - (b) Define total cross section and differential scattering cross section and obtain the relation between scattering cross-sections in L-system and C-system.
 - (c) Solve Hard sphere scattering problem using partial wave analysis method.

OR

- (p) Discuss the validity condition for Born approximation.
- (q) Calculate scattering cross-section for a particle from a square well potential of finite potential using Born Approximation.
- (r) What is partial wave analysis? Explain mathematical formalism of partial wave analysis method.

EITHER

4.	(a)	Explain the algebra of creation and annihilation operators for Fermions.	7
	(b)	Explain how symmetric (ψ_s) or antisymmetric (ψ_A) wave functions can be constructed figeneral unsymmetrical wave function ψ .	rom 5
	(c)	Construct spin functions for three electron system.	4
	OR		
	(p)	Show that antisymmetric wave function for two fermions would vanish if both occupy same position with identical spin.	the 5
	(q)	Show that symmetry character does not change with time.	5
	(r)	What is general representation of one and two particle operators in creation and annihila operator algebra?	ation 6
	EIT	THER	
5.	(a)	Show that spinning motion of electron is natural outcome of the Dirac's equation.	6
	(b)	Obtain covariant form of Klein-Gordon equation.	4
	(c)	Explain the semiclassical theory of radiation.	6
	OR		
	(p)	Develop K. G. equation for spin zero particle.	6
	(q)	Discuss the properties of Dirac's matrices.	4
	(r)	State Dirac's relativistic wave equation. Obtain the equation of continuity corresponding it.	ng to