WPZ-3429

M.Sc. Semester—II (CBCS Scheme) Examination **PHYSICS**

2-PHY-3 Solid State Physics

Time: Three Hours] [Maximum Marks: 80 [Credits: 04 EITHER 1. Show that atomic packing fraction for fcc and hcp metals are same. 6 (b) What are space groups in three dimensional lattice? Explain the concept of glide plane and screw axis operation. (c) What are point groups in 2-dimension? 6 OR (p) Explain the role of inversion symmetry in piezoelectric crystal with example. 4 (q) What are point groups of orthorhombic system? 6 (r) Give the Hermann-Mauguin symbols for point groups with (a) a four-fold rotation axis (b) identity and an inversion axis (c) a four-fold axis and a mirror plane perpendicular to the rotation axis. 6 **EITHER** 2. (a) Show that in SC structure, diffraction peaks will be available for all possible combinations of (h.k.l). (b) Explain, why X-ray diffraction spectrum of b.c.c. lattice will not contain lines such as (100), (111) but lines such as (200), (110). (c) Describe powder photograph method in detail. Explain, why the diameter of a powder camera is 57.3 mm or its multiple? OR 4 (p) State advantages of oscillating crystal method over rotating crystal method. (g) Derive relation for form factor and show that it can have maximum value equal to the atomic number. Derive Laue's equations of diffraction of X-rays and obtain Bragg's diffraction condition from them. EITHER (a) Prove that, $2K*G + G^2 = 0$ 3. where K is the wave vector along incident X-ray; 8 G is reciprocal lattice vector. 8 (b) Explain how neutron diffraction can explore magnetic structure of the crystal. OR 8 (p) Explain graphical method to analyze powder diffraction pattern. 8 (q) Discuss the preparation of Bernel chart. (Contd.) 1

EITHER

4.	(a)	Derive dispersion relation for mono-atomic lattice vibrations.	6
	(b)	Derive the relation for frequency associated with localized lattice vibrations.	6
	(c)	Explain the process to find Madelung constant for ionic crystal.	4
	OR		
	(p)	What are phonons?	2
	(q)	Find out possible modes of vibration of linear chain of diatomic lattice	6
	(r)	Derive dispersion relation for one dimensional diatomic lattice. What is the significance optical and acoustical branches of lattice vibrations?	of 8
	EIT	HER	
5.	(a)	What is Einstein temperature? State the basic drawbacks of Einstein model of specific he	at, 5
	(b)	Derive an expression for lattice specific heat of solid by considering Einstein's model.	8
	(c)	Calculate Einstein temperature : given Einstein frequency as 900 GHz, $K_3 = 1.38 \times 10^{-23}$ J and $h = 6.6 \times 10^{-34}$ Js.	7/K 3
	OR		
	(p)	Why does Dulong and Petit's law fail at low temperature? Which discrepancy was remove by Einstein?	red 5
	(q)	Explain assumptions and derive an expression for the lattice specific heat according Debye model.	to
	(r)	If the frequencies of vibration of solid are all equal and its Debye temperature is 373° calculate molar specific heat of the solid at 773° C.	C,

125

2