AU-300

M.Sc. Semester-II (CBCS Scheme) Examination

PHYSICS

Paper-2-PHY-1 Electrodynamics-I

		Paper-2-PH Y-1 Electrodynamics-1	
Time : Three Hours] [Maximu			rks : 80
		Note: All questions are compulsory and carry equal marks.	
1.	(a)	Explain the energy density in an electrostatic electric field.	7
	(b)	Define:	
		(i) Line Integral	
		(ii) Surface Integral.	4
	(c)	Explain flux of a vector field.	5
		OR	
	(p)	Let $f = f(x, y, z)$ and $g = g(x, y, z)$ be two differentiable scalar fields. Prove grad $f X$ grad g is solenoidal.	e that :
	(q)	Prove that : $\vec{E} = -\vec{\nabla} V$	4
	(r)	Explain the electric energy for a arbitrary charge distribution.	5
2.	(a)	Obtain an expression for electric field in Cartesian coordinates.	7
	(b)	An infinitely long rectangular metal pipe is grounded but one end at $x=0$ is maintain specified potential $V_o(y, z)$. Find the potential inside the pipe.	ned at a
	(c)	Explain the method of electrical images.	3
		OR	
	(p)	Derive an expression for electrical potential using spherical polar coordinates.	7
	(q)	Find potential charge distribution within conducting spherical boundary using Green's fi	unction. 5
	(r)	Define Green's function with respect to the potential problem.	4
VOX	(—380	037	(Contd.)

www.sgbauonline.com

3.	(a)	Deduce an expression for the magnetic field at a point due to a certain distance from conducting straight wire.	n a 7
	(b)	Deduce an expression for magnetic field at a centre of circular loop.	6
	(c)	Explain Lorentz force equation.	3
		OR	
	(p)	Define magnetic moment and derive an expression for gyromagnetic ratio.	7
	(q)	Find magnetic field due to solenoid.	6
	(r)	State Ampere's circuitat law.	3
4.	(a)	Show that potential at any point due to any charge distribution is the sum of potential several multipole moments.	by 7
	(b)	Establish the relation between \vec{P} , \vec{E} , and \vec{D} .	5
	(c)	Explain the behaviour of dielectric in uniform electric field.	4
		OR	
	(p)	Estimate the field outside the dielectric sphere when it is placed in uniform electric field	d. 7
	(q)	Derive the relation between electric susceptibility and molecular polarizability.	5
	(r)	Explain polar and non-polar molecules.	4
5.	(a)	Show that electromagnetic waves travel in free space with the speed of light.	6
	(b)	Write Maxwell's equations with their word statement.	4
	(c)	Explain displacement current and find total current density.	6
		OR	
	(p)	Show that $(\dot{E} \times \dot{H})$ represents the rate of flow of energy per unit area.	7
	(q)	Derive wave equation for scalar and vector potentials.	5
	(r)	Explain in brief Faraday's Law of electromagnetic induction.	4