M.Sc. Semester-II (CBCS Scheme) Examination PHYSICS

2-PHY-1 Electrodynamics-I

Tin	ne : Tl	hree Hours] [Maximum Mark	ks : 80
		N.B.: — All questions are compulsory and carry equal marks.	
1.	(a)	State and Prove Gauss's law.	7
	(b)	Differentiate between curl and divergence of a functions.	4
	(c)	Obtain an expression with explanation of the electric energy for a discrete charge distrib	oution. 5
		OR	
	(p)	Show that electric field at any point is equal to negative gradient of potential at that and hence derive Poisson's and Laplace's equations.	point 7
	(q)	Prove that divergence of curl and any vector field vanishes.	4
	(r)	Explain energy density in electrostatic field.	5
2.	(a)	Write down Laplace's equation in spherical co-ordinates and obtain its solution.	7
	(b)	Explain an image method for a point charge placed at distance 'd' from infinite grouplane at zero potential.	unded 6
	(c)	Explain how Green's function satisfies the symmetric property.	3
		OR	
	(p)	Derive an expression for electric potential using Cartesian co-ordinates.	7
	(q)	Find the potential between co-axial conducting cylinders.	6
	(r)	Define Green's function in reference to electrostatic potential problems.	3
3.	(a)	State and prove Ampere's law and derive an expression for magnetic field due to so using it.	lenoid 7
	(b)	Using Lorentz force equation, deduce an expression for force on a straight conductor calcurrent in uniform magnetic field.	rrying 6
	(c)	State Biot-Savart's law.	3
		OR	
	(p)	Define Magnetic moment and discuss atom as a magnetic dipole.	7
	(q)	Derive an expression for magnetic field due to coil of radius 'a' along its axis.	6
	(r)	Define magnetic moment in case of current carrying loop.	3
4.	(a)	Derive Claussius-Mossotti equation.	7
	(b)	Show that normal components of electric displacement density \vec{D} and tangential comp	onents
		of electric field \vec{E} on either side of interface satisfy boundary conditions.	5
	(c)	Discuss susceptibility and polarizability.	4
		OR	

ht	tp://w	www.sgbauonline.com/			
	(p)	What is molecular polarizability? Discuss it on the basis of molecular model.	7		
	(q)	Estimate the electric field inside a dielectric sphere placed in uniform electric field.	5		
	(r)	Establish relation between \vec{P} , \vec{E} and \vec{D} .	4		
5.	(a)	State and prove Poynting vector theorem.	7		
	(b)	Derive the relation $\nabla \times \vec{B} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$.	5		
	(c)	What is Lorentz condition for gauge invariance?	4		
OR					
	(p)	State Faraday's law and give its integral and differential form.	7		
	(q)	Derive the wave equations for scalar and vector potentials.	5		
	(r)	Prove the relation $\nabla \cdot \vec{B} = 0$.	4		