M.Sc. Semester-II (CBCS Scheme) Examination PHYSICS

		2-PHY-4 (II) Laser Fundamentals & Applications	
Tin	ne : T	Three Hours] [Maximum Marks: 8	0
		Note: — All questions are compulsory and carry equal marks.	
1.	(a)	A semiconductor laser operates at a free-space wavelength of 790 nm, and has a longitudina coherence length of 1 mm. Determine the linewidth in terms of both frequency and wavelength	al 1. 6
	(b)	Draw and write the expression of time dependent decay of the electric field produced by a oscillating electron when the loss of energy due to radiation is taken into account.	n 6
	(c)	White the minimum of day the day the	4
		OR	
	(p)	Define gain coefficient. What is the relationship between gain coefficient and stimulated emission cross section?	d 4
	(p)	Explain the following statement, "In the visible spectrum, the dominance of stimulated emission over spontaneous emission normally happens only in stars".	n 6
	(r)	A particular atom has two energy levels with a transition wavelength of 420 nm. At 297 If there are 2.5×10^{21} atoms in the lower state. Calculate how many atoms are in the upper state.	
2.	(a)	Which are the two factors that determine if a two-mirror laser can reach saturation intensity and why?	у 6
	(b)	A laser amplifier with a length of 0.12 m and a gain of 60 m ⁻¹ has a 100% reflecting mirro at the laser wavelength coated on one end of the laser rod. For a rod diameter of 5 mm what would be the half angle of the diverging beam exiting from the amplifier? Would the beam reach the saturation intensity as it emerges from the rod after having made a double pass through the rod?	ı, c
	(c)	Draw a graph showing growth and saturation of laser beam as a function of amplifier length	1. 4
		OR	
	(p)	Prove mathematically that the population inversion is not possible in a two level system.	6
	(q)	Compare the pumping requirement of Nd:YAG laser with that for Ruby laser. Whether number of laser level plays a role here?	r 6
	(r)	What are the different laser pumping mechanisms? Briefly write principle of each of them	1. 4
3.	(a)	Draw the various possible laser cavity configurations possible.	7
	(b)	Estimate the mode number and mode spacing for an Ar ion laser oscillating at 514 nm in cavity of length 1 m. Assume $n = 1$.	a 5
	(c)	Write a short note on spectral hole burning.	4

OR

	1.9		
	htt	p://www.sgbauonline.com/	
	(p)	In context with the ideal Gaussian beam, define (i) Beam waist (ii) Rayleigh range. Draw diagram showing Gaussian beam parameters mentioned above.	а 6
	(q)	Obtained an ABCD matrix for a beam translating from point 1 to point 2.	6
	(r)	Write out the mode distributions at the mirrors for the TEM_{00} and TEM_{01} in terms of the	ne
		transverse variables x, y and $\rho = \sqrt{x^2 + y^2}$.	4
4.	(a)	Compare the mode-locked pulse width Δt_p and the separation between pulses Δt_{sep} for dye laser operating over its entire gain bandwidth (570 nm-640 nm) with cavity mirr separation by 2 m. The Index of refraction of a laser dye in typical solvent is 1.4.	
	(b)	How Kerr Lens Mode-Locking (KLM) is achieved?	6
	(c)	Write four applications of femtosecond laser.	4
		OR	
	(p)	What are the requirements to produce the necessary high inversion density needed for Q-Switching?	For 6
	(q)	Draw a diagram depicting the evolution of a Q-Switched laser pulse.	6
	(r)	Write four applications of nanosecond laser.	4
5.	(a)	Write the general excitation mechanism in dye laser in detail.	6
	(b)	What are the different types of laser structures used for the CO, laser? Draw and brief explain all of them.	fly 8
	(c)	Comment on the emission linewidths of a radiating Nd ion doped into a YAG crystal a Glass material.	nd 2
		OR	
	(p)	Describe the structure and working of Double Heterostructure semiconductor Laser.	6
	(q)	Draw and explain the energy level diagram of Helium Neon laser (red wavelength).	6
	(r)	Why Argon ion laser is relatively inefficient? At which wavelength(s) this laser operate.	s ? 4